|
|
|
||
The course represents the treatment of basic results from nonlinear functional analysis in Banach spaces. It contains: monotone operators, fixed point theory (Brouwer's and Schauder's fixed point theorems), differentiability, potential operators, topological degree and numerical methods for solving nonlinear operator equations in Banach spaces.
Last update: DOLEJSI/MFF.CUNI.CZ (15.04.2008)
|
|
||
The course gives students a knowledge of fundamentals of the differential calculus in Banach spaces, theory of monotone and potential operators and numerical methods for the solution of operator equations. Last update: T_KNM (16.05.2008)
|
|
||
Gajewski H., Gröger K., Zacharias K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Berlín l974, (ruský překlad l978) Fučík Sv., Nečas J., Souček J., Souček V.: Spectral analysis of nonlinear operators, l973 Deimling K.: Nonlinear functional analysis, l985 Zeidler E.: Nonlinear Functional Analysis and Its Applications l, l984 Last update: T_KNM (16.05.2008)
|
|
||
Lectures in a lecture hall. Last update: T_KNM (16.05.2008)
|
|
||
Examination according to the syllabus. Last update: T_KNM (16.05.2008)
|
|
||
Introduction in the theory of diferential calculation in Banach spaces.
Browder's theory of monotone operators.
Potential operators.
Dual functionals.
Numerical methods for operatoe equations, Galerkin and Ritz methods.
Brower's and Schauder's fixed-point theorems. Last update: T_KNM (16.05.2008)
|
|
||
basic knowledge of functional analysis Last update: T_KNM (16.05.2008)
|