The course surveys solutions to common NLP tasks ranging from entity recognition to text generation. It evaluates various approaches (machine learning, rules, larger resources, ...) and their combinations. Part of the course consists of students presenting and
discussing papers relevant to a give topic. Each student implements a prototype system solving a particular task.
Last update: Vidová Hladká Barbora, doc. Mgr., Ph.D. (31.01.2019)
Kurz se zabývá přístupy k řešení standardní úkolů NLP od rozpoznávání entit až po generování textů. Hodnotí různé metody (strojové učení, pravidlové systémy, větší lexikony, ...) a jejich kombinace. Část látky je probírána formou diskuzí nad konkrétními
články, které studentí prezentují. Každý student implementuje prototypový systém, který řeší vybraný úkol.
Last update: Vidová Hladká Barbora, doc. Mgr., Ph.D. (31.01.2019)
Course completion requirements -
leading discussion on selected papers (max 2 papers per person)
programming project
Last update: Hana Jiří, RNDr., Ph.D. (10.06.2019)
vedení diskuze k vybraným článkům (max 2 články na studenta)
projekt
Last update: Hana Jiří, RNDr., Ph.D. (10.06.2019)
Literature -
Koskenniemi, Kimmo, 1983, Two-level Morphology: A General Computational Model for Word-Form Recognition and Production, University of Helsinki, Department of General Linguistics.
Goldsmith, John. 2001. Unsupervised Acquisition of the Morphology of a Natural Language.
Yarowsky, David and Richard Wicentowski. 2001. Minimally supervised morphological analysis by multimodal alignment. Proceedings of ACL-2000, Hong Kong, pages 207-216
Schone, Patrick and Daniel Jurafsky. 2001. Knowledge-Free Induction of Inflectional Morphologies. Proceedings of the North American Chapter of the Association for Computational Linguistics.
Cucerzan. 2007. Large-Scale Named Entity Disambiguation Based on Wikipedia Data
Daiber, Joachim, Max Jakob, Chris Hokamp and Pablo N. Mendes 2013. Improving Efficiency and Accuracy in Multilingual Entity Extraction. Proceedings of the 9th International Conference on Semantic Systems (I-Semantics)
Surdeanu, Mihai, David McClosky, Mason R. Smith, Andrey Gusev, and Christopher D. Manning. 2011. Customizing an Information Extraction System to a New Domain. In Proceedings of the ACL 2011 Workshop on Relational Models of Semantics
Reiter, Ehud and Robert Dale 2000. Building Natural Language Generation Systems. Cambridge University Press.
Last update: Vidová Hladká Barbora, doc. Mgr., Ph.D. (31.01.2019)
Koskenniemi, Kimmo, 1983, Two-level Morphology: A General Computational Model for Word-Form Recognition and Production, University of Helsinki, Department of General Linguistics.
Goldsmith, John. 2001. Unsupervised Acquisition of the Morphology of a Natural Language.
Yarowsky, David and Richard Wicentowski. 2001. Minimally supervised morphological analysis by multimodal alignment. Proceedings of ACL-2000, Hong Kong, pages 207-216
Schone, Patrick and Daniel Jurafsky. 2001. Knowledge-Free Induction of Inflectional Morphologies. Proceedings of the North American Chapter of the Association for Computational Linguistics.
Cucerzan. 2007. Large-Scale Named Entity Disambiguation Based on Wikipedia Data
Daiber, Joachim, Max Jakob, Chris Hokamp and Pablo N. Mendes 2013. Improving Efficiency and Accuracy in Multilingual Entity Extraction. Proceedings of the 9th International Conference on Semantic Systems (I-Semantics)
Surdeanu, Mihai, David McClosky, Mason R. Smith, Andrey Gusev, and Christopher D. Manning. 2011. Customizing an Information Extraction System to a New Domain. In Proceedings of the ACL 2011 Workshop on Relational Models of Semantics
Reiter, Ehud and Robert Dale 2000. Building Natural Language Generation Systems. Cambridge University Press.
Last update: Vidová Hladká Barbora, doc. Mgr., Ph.D. (31.01.2019)