SubjectsSubjects(version: 804)
Course, academic year 2016/2017
   Login via CAS
Statistical Machine Translation - NPFL087
Czech title: Statistický strojový překlad
Guaranteed by: Institute of Formal and Applied Linguistics (32-UFAL)
Faculty: Faculty of Mathematics and Physics
Actual: from 2010
Semester: summer
E-Credits: 6
Hours per week, examination: summer s.:2/2 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: RNDr. Ondřej Bojar, Ph.D.
Class: DS, matematická lingvistika
Informatika Mgr. - Matematická lingvistika
Classification: Informatics > Computer and Formal Linguistics
Annotation -
Last update: T_UFAL (05.05.2017)

Participants of the seminar will get closely acquainted with methods of machine translation (MT) that rely on automatic processing of (large) training data as well as with open-source implementations of these methods. We will cover a range of approaches starting with linguistically uninformed "phrase-based" MT up to surface and deep syntactic MT. The final grade will reflect mainly students' own contributions: either experimental results, implemented tools or modifications to existing systems, or survey reports.
Aim of the course - Czech
Last update: T_UFAL (05.05.2017)

Seznámit studenty s metodami statického strojového překladu i se současnými volně šiřitelnými implementacemi systémů strojového překladu. V praktických úlohách se studenti dle svého uvážení dozvědí více o alternativních přístupech ke strojovému překladu, vyzkoušejí si, jak obtížné je zvýšit kvalitu frázového překladu nasazením vlastních nápadů, či samostatnou vědeckou prací přispějí k součaným poznatkům na poli strojového překladu.

Literature -
Last update: T_UFAL (11.05.2010)

Philipp Koehn:

Statistical Machine Translation. Cambridge University Press. ISBN: 978-0521874151, 2009.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, Evan Herbst:

Moses: Open Source Toolkit for Statistical Machine Translation, Annual Meeting of the Association for Computational Linguistics (ACL), demonstration session, Prague, Czech Republic, June 2007.

Philipp Koehn, Marcello Federico, Wade Shen, Nicola Bertoldi, Ondřej Bojar, Chris Callison-Burch, Brooke Cowan, Chris Dyer, Hieu Hoang, Richard Zens, Alexandra Constantin, Christine Moran, and Evan Herbst:

Open Source Toolkit for Statistical Machine Translation: Factored Translation Models and Confusion Network Decoding. Technical report, Johns Hopkins University, Center for Speech and Language Processing, 2006.

Ondřej Bojar:

Exploiting Linguistic Data in Machine Translation. PhD thesis, ÚFAL, MFF UK, Prague, Czech Republic, October 2008.

Bonnie J. Dorr, Pamela Jordan, John W. Benoit:

A Survey of Current Paradigms in Machine Translation, 1998.

Philipp Koehn, Franz Josef Och and Daniel Marcu:

Statistical Phrase-Based Translation. 2003.

Zhifei Li, Chris Callison-Burch, Sanjeev Khudanpur, Wren Thornton:

Decoding in Joshua: Open Source, Parsing-Based Machine Translation. PBML 91, 2009.

Vamshi Ambati, Alon Lavier:

Improving Syntax-Driven Translation Models by Re-structuring Divergent and Nonisomorphic Parse Tree Structures. In Proceedings of AMTA 2008, 235-244.

A daląí vybrané články z konferencí (ACL, COLING ap.), technické zprávy


Syllabus -
Last update: T_UFAL (05.05.2017)

1. Evaluating machine translation quality (manually and automatically). Empirical confidence bounds and reliability of MT metrics in general.

2. Machine translation as a problem in information theory. Translation model, language model, general log-linear model. The space of partial hypotheses and search in the space (the "decoding"). Phrase-based translation, open-source toolkit Moses.

3. Parallel texts, alignment (sentence and word aligment, IBM models 1 to 3). Extraction of "translation dictionaries" and rules from the parallel texts. Open source tools for corpus preparation and alignment (hunalign, GIZA++).

4. Morphological pre-processing, phrase-based translation with additional factors. Experimental results and issues (too crude pruning).

5. Tuning parameters of log-linear model (Minimum Error Rate Training, MERT).

6. Phrase-structure syntax in MT, translation based on (context-free) parsing, generic hypergraph decoder. Open source tools for syntactically-informed MT (Hiero, Joshua, SAMT, Stat-XFER).

7. Dependency syntax in MT (Quirk and Menezes, Bojar).

8. Deep syntax in MT (TectoMT). The TectoMT platform.

9. Presentation of students' contributions.

Students' contribution and grading:

Individuals or groups of two to three students choose a topic early in the term, set up some experiments, implement a modification of an existing MT system or run baseline experiments with an available prototype of an alternative MT method. Each of the projects is concluded by writing up a report and presenting the results in the lectures.

The tutorials ("cviceni") of the subject are devoted to practical application of the algorithms and toolkits described as well as for consulting students' projects.

The final grading reflects: the knowledge of discussed topics, the project report paper and the project presentation.

Charles University | Information system of Charles University |