|
|
|
||
Continuation of Statistical Methods in Natural Language Processing I.
Introduces the notion of linguistic experiment and its evaluation. The
role of corpora in statistical NLP. Standard NLP tasks (tagging,
phrase-structure and dependency parsing, generative and discriminative
models) are explained and methods presented.
Last update: T_UFAL (13.05.2014)
|
|
||
Turning in one homework (50% of the grade), written exam (50%). "Zápočet" is not a prerequisite for taking the exam. To get "zápočet", homework grade must be at least 1 point (out of 100). Homework can be turned in max. three times, at the latest on the date announced on the course webpage. Every late day subtracts 5 points. Turning in the homework later than 10 days after the deadline, carries a constant penalty of 50 points. Last update: Hajič Jan, prof. RNDr., Dr. (02.03.2021)
|
|
||
Manning, C. D. and H. Schütze: Foundations of Statistical Natural Language Processing . The MIT Press. 1999. ISBN 0-262-13360-1.
Wall, L., Christiansen, T. and R. L. Schwartz: Programming PERL. O'Reilly. 1996. ISBN 1-56592-149-6.
Charniak, E.: Statistical Language Learning. The MIT Press. 1996. ISBN 0-262-53141-0.
Jelinek, F.: Statistical Methods for Speech Recognition. The MIT Press. 1998. ISBN 0-262-10066-5.
McDonald, R. et al.: Non-projective dependency parsing using spanning tree algorithms. 2005. EMNLP conference proceedings, s. 523-530.
Sborníky z hlavních světových konferencí: ACL (vč. EMNLP/CoNLL), COLING. Last update: Hajič Jan, prof. RNDr., Dr. (02.03.2021)
|
|
||
Introduction. Course Overview.
Evaluation methodology (examples from tagging). Precision, Recall, Accuracy, F-measure. NL Corpora.
The task of Tagging. Tagsets, Morphology, Lemmatization. Morphological Analysis and Generation. Tagging methods. Manually designed Rules and Grammars. Statistical Methods (overview). HMM Tagging (Supervised, Unsupervised). Statistical Transformation Rule-Based Tagging.
Introduction to Parsing. Generative Grammars. Properties of Regular and Context-free Grammars. Non-statistical Parsing Algorithms (An Overview). Simple top-down parser with backtracking. Shift-reduce parser. Treebanks and Treebanking. Evaluation of Parsers.
Probabilistic Parsing. Introduction. PCFG Parameter Estimation. PCFG: Best parse. Probability of a string. Lexicalized PCFG. Dependency parsing.
Statistical Machine Translation (MT). Alignment and Parameter Estimation for MT. Last update: Hajič Jan, prof. RNDr., Dr. (02.03.2021)
|