SubjectsSubjects(version: 978)
Course, academic year 2020/2021
   Login via CAS
Mathematics for Physicists I - NOFY161
Title: Matematika pro fyziky I
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020 to 2020
Semester: winter
E-Credits: 8
Hours per week, examination: winter s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Additional information: https://www2.karlin.mff.cuni.cz/~malek/new/index.php?title=NOFY161_Matematika_pro_fyziky_1
Guarantor: prof. RNDr. Josef Málek, CSc., DSc.
Teacher(s): doc. RNDr. Marie Běhounková, Ph.D.
Mgr. Tomáš Los, Ph.D.
prof. RNDr. Josef Málek, CSc., DSc.
doc. Mgr. Vít Průša, Ph.D.
Mgr. Tomáš Salač, Ph.D.
RNDr. Ondřej Šrámek, Ph.D.
Class: Fyzika
Classification: Physics > Mathematics for Physicists
Incompatibility : NMAF061
Interchangeability : NMAF061
Is incompatible with: NMAF061
Is interchangeable with: NMAF061
Annotation -
Basic mathematics course for 2nd year students of physics. Prerequisities: Mathematical analysis I+II, NOFY151, NOFY152, and Linear algebra I+II, NOFY141, NOFY142.
Last update: Kudrnová Hana, Mgr. (30.06.2020)
Aim of the course -

Basic mathematics course for 2nd year students of physics. Prerequisities: Mathematical analysis I+II, Mathematics for physicists I and Linear algebra I+II.

Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (21.09.2022)
Course completion requirements - Czech

Zápočet je třeba mít zapsán před zahájením zkoušky.

Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (21.09.2022)
Literature - Czech
  • Kopáček, J. a kol.: Matematika pro fyziky, díly III-V, skriptum MFF UK, Matfyzpress
  • Záznamy přednášek
Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (21.09.2022)
Teaching methods - Czech

přednáška + cvičení

Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (21.09.2022)
Requirements to the exam - Czech

Zkouška bude písemná a bude mít 2 části, početní a teoretickou. Student musí úspěšně složit obě části zkoušky.

Požadavky u zkoušky odpovídají sylabu předmětu v rozsahu, který byl probrán na přednášce a cvičení.

Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (21.09.2022)
Syllabus -

1. Sequences and series of functions

Pointwise and uniform convergence; criteria for uniform convergence of sequences and series of functions; interchanging of limits, derivative and integral of sequences and series of functions; power series; real analytic functions.

2. Lebesgue integral

Sigma-algebras, measures; construction of the Lebesgue measure; measurable functions; approximation of measurable fuunctions by simple functions; integral of simple non-negative functions; integral of general functions and its properties; limite passage through the integral; relations among Riemann, Newton and Lebesgue integral; integral dependent on parameters; Fubini's theorem, change of variables.

3. Line integral in general dimension

The notion of a curve, line integrals of 1st and 2nd kind. Potential and curl-free vector fields.

4. Surface integral in general dimension

The notion of a surface, orientation of a surface. Surface integrals of 1st and 2nd kind, Gramm determinant, Gauss-Ostrogradskij, Green and Stokes theorems. Integral representations of div and curl operators.

5. Integration of differential forms

Outer algebras on linear vector space, differential forms, differentiation, outer differential, integral from a differential form. General Stokes theorem.

Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (21.09.2022)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html