SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Linear Algebra I - NOFY141
Title: Lineární algebra I
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Additional information: https://www.karlin.mff.cuni.cz/~smid/pmwiki/pmwiki.php?n=Main.LAproFZS2425
Guarantor: Mgr. Dalibor Šmíd, Ph.D.
prof. Ing. Branislav Jurčo, CSc., DSc.
Mgr. Lukáš Krump, Ph.D.
Teacher(s): Bc. Filip Fryš
Mgr. Lukáš Krump, Ph.D.
doc. RNDr. Petr Somberg, Ph.D.
Mgr. Dalibor Šmíd, Ph.D.
Class: Fyzika
Classification: Mathematics > Algebra
Physics > Mathematics for Physicists
Incompatibility : NMAF027
Interchangeability : NMAF027
Is incompatible with: NMAF027
Is interchangeable with: NMAF027
Annotation -
This course gives, together with parallel courses on analysis, a basic course of mathematics for physicists. Emphasis is given also to relationship of all these disciplines. Keywords linear spaces, dimension, matrices, determinants, groups and algebras of matrices, eigenvalues, Jordan normal form.
Last update: Kudrnová Hana, Mgr. (20.05.2019)
Course completion requirements -

Available on the webpage of the course https://www.karlin.mff.cuni.cz/~smid/pmwiki/pmwiki.php?n=Main.LAproFZS2425

Last update: Šmíd Dalibor, Mgr., Ph.D. (02.10.2024)
Literature -

D. Šmíd: Lineární algebra pro fyziky, elektronic text, available on the webpage of the course

K. Výborný, M.Zahradník: Používáme lineární algebru (sbírka řešených příkladů), Karolinum 2002

Other sources available on the webpageof the course.

Last update: Šmíd Dalibor, Mgr., Ph.D. (02.10.2024)
Requirements to the exam -

Available on the webpage of the course https://www.karlin.mff.cuni.cz/~smid/pmwiki/pmwiki.php?n=Main.LAproFZS2425

Last update: Šmíd Dalibor, Mgr., Ph.D. (02.10.2024)
Syllabus -

1 Vectors and operations with them, scalar products, maps on vectors.

2 Matrix operations, inversion of a matrix.

3 Systems of linear equations, Gauss elimination method.

4 Groups, vector spaces. Subspaces, linear independence, linear span.

5 Basis, dimension, Steinitz theorem.

6 Rank of a matrix, Frobenius theorem.

7 Linear maps and their matrices, kernel and image, rank-nullity theorem.

8 Coordinates and their transformations, similarity of matrices, trace of a matrix and of a linear map.

9 Permutation and its sign. Determinant and its properties. Expansion along a row and a column.

10 Determinant of a product, inverse matrix formula, Cramer's rule.

11 Eigenvectors and eigenspaces.

12 Block matrices, sum and direct sum of subspaces.

Last update: Šmíd Dalibor, Mgr., Ph.D. (02.10.2024)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html