SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Probabilistic Methods in Physics - NOFY062
Title: Pravděpodobnostní metody fyziky
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2019
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:2/1, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Petr Chvosta, CSc.
prof. RNDr. Ivan Ošťádal, CSc.
Teacher(s): prof. RNDr. Petr Chvosta, CSc.
Annotation -
The lecture starts with an accesible introductory formulation of the probability theory as suited for the students of physics. New consepts are demonstrated on a selected set of examples from physics. Subsequently, advanced physical problems are treated using Markov chains (Ehrenfest model, branching process), continuous-time Markov processes (Poisson process, random walks, dichotomic process), Markov processes with continuous realizations (Wiener process, Ornstein-Uhlenbeck process), point processes and renewal processes, Langevin Equation and Fokker-Planck Equation, Brownian motion, path-integral description of stochastic processes.
Last update: Chvosta Petr, prof. RNDr., CSc. (19.05.2005)
Aim of the course -

The lecture starts with an accesible introductory formulation of the probability theory as suited for the students of

physics. New consepts are demonstrated on a selected set of examples from physics. Subsequently, advanced physical

problems are treated using Markov chains (Ehrenfest model, branching process), continuous-time Markov processes

(Poisson process, random walks, dichotomic process), Markov processes with continuous realizations (Wiener process,

Ornstein-Uhlenbeck process), point processes and renewal processes, Langevin Equation and Fokker-Planck Equation,

Brownian motion, path-integral description of stochastic processes.

Last update: T_KVOF (28.03.2008)
Course completion requirements - Czech

Předmět je zakončen zápočtem a ústní zkouškou.

Podmínky pro udělení zápočtu: účast převyšující 70% a vypracování projektu. V rámci projektu je požadována krátká studie, jejímž cíle je srovnání analytického a simulačního přístupu k vybranému jednomu pravděpodobnostnímu modelu.

Výchozí seznam modelů, které připadají v úvahu, bude specifikován v průběhu přednášky.

Získání zápočtu je podmínkou připuštění k ústní zkoušce. Zkouška spočívá v rozpravě o dvou zvolených širších tématech ze sylabu.

Last update: Chvosta Petr, prof. RNDr., CSc. (11.06.2019)
Literature - Czech

van Kampen, N. G.: Stochastic Processes in Physics and Chemistry. Revised and Enlarged Edition, North-Holland, Amsterdam, (1992).

Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer, Berlin (1991). Second edition.

Risken, H.: The Fokker-Planck Equation, Springer, Berlin (1989).

Feller, W.: An Introduction to Probability Theory and Its Applications.,

Vol. 1., Third edition, Wiley, New York, 1968. Vol. 2., Second edition, Wiley, New York, 1971.

Last update: Chvosta Petr, prof. RNDr., CSc. (19.05.2005)
Teaching methods - Czech

přednáška + cvičení

Last update: T_KVOF (28.03.2008)
Requirements to the exam - Czech

Zkouška je ústní, spočívá v rozpravě o dvou zvolených tématech ze sylabu. Po volbě dvou témat se student samostatně připravuje k rozpravě. Poté následuje jeho expozé a diskuze. Zkouška trvá zpravidla okolo 30 minut.

Důraz je kladen na celkové pochopení látky, nikoliv na detailní matematické zpracování jednotlivých pravděpodobnostních modelů.

Last update: Chvosta Petr, prof. RNDr., CSc. (11.06.2019)
Syllabus -

1. Probability and Random Variables

Probability paradigms and paradoxes. Random variables. Their role in physics. Distribution function, characteristic function. Bernoulli, Gauss and Poisson distributions, other examples. Two random variables, joint and conditional distribution, correlations. Sequences of random variables. Limit theorems. Lévy distributions. Information entropy.

2. Stochastic Processes

Discrete-time Markov chains (random walks, Ehrenfest model, branching process). Continuous-time Markov processes (Pauli master equation, Poisson process, dichotomic process, continuous-time random walks). Markov processes with continuous realizations (Wiener process, Ornstein-Uhlenbeck process). Point processes and renewal processes. Shot noises. Stationary processes, their spectra. Self-averaging. Stochastic differential equations, multiplicative and additive noise. Noise-induced transitions.

3. Diffusion Theory

Thermal noise, Brownian motion. Langevin Equation and Fokker-Planck Equation. Biased diffusion. Boundaries. Dwelling time and first passage time. Methods of solution (Laplace transform, eigenfunction expansion, propagators, path integrals). Diffusion vs. trapping. Kramers equation. Fractal diffusion. Dichotomic diffusion, telegrapher's equation. Extremal properties of trajectories. Physics of random polymer chains.

4. Selected Applications in Physics

Static (quenched) and dynamical disorder. Stochastic Schroedinger (Liouville) equation, optical Bloch equation, absorption. Harmonic oscillator with randomly modulated frequency, motional narrowing. Laser equation. Statistical properties of light. Percolation. Stochasticity versus chaotic behaviour of deterministic systems. Random-growth models. Molecular motors. Stochastic resonance.

5. Selected Applications in Other Fields

Growth of populations (predator-prey systems, Verhulst model). Genetic models. Chemical systems (diffusion-controled reactions, coagulation). Migration of population. Spreading of diseases. Queueing models (systems of service). Hazardous plays. Assurance models.

Last update: Chvosta Petr, prof. RNDr., CSc. (19.05.2005)
Entry requirements - Czech

Elementární partie kombinatoriky a teorie pravděpodobnosti. Množina elementárních jevů a její podmnožiny. Základní operace jako sčítání a násobení pravděpodobností. Příklady motivované karetními hrami, hracími kostkami, ruletou.

Last update: Chvosta Petr, prof. RNDr., CSc. (11.06.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html