|
|
|
||
The lecture starts with an accesible introductory formulation of the probability theory as suited for the students of
physics. New consepts are demonstrated on a selected set of examples from physics. Subsequently, advanced physical
problems are treated using Markov chains (Ehrenfest model, branching process), continuous-time Markov processes
(Poisson process, random walks, dichotomic process), Markov processes with continuous realizations (Wiener process,
Ornstein-Uhlenbeck process), point processes and renewal processes, Langevin Equation and Fokker-Planck Equation,
Brownian motion, path-integral description of stochastic processes.
Last update: Chvosta Petr, prof. RNDr., CSc. (19.05.2005)
|
|
||
The lecture starts with an accesible introductory formulation of the probability theory as suited for the students of physics. New consepts are demonstrated on a selected set of examples from physics. Subsequently, advanced physical problems are treated using Markov chains (Ehrenfest model, branching process), continuous-time Markov processes (Poisson process, random walks, dichotomic process), Markov processes with continuous realizations (Wiener process, Ornstein-Uhlenbeck process), point processes and renewal processes, Langevin Equation and Fokker-Planck Equation, Brownian motion, path-integral description of stochastic processes. Last update: T_KVOF (28.03.2008)
|
|
||
Předmět je zakončen zápočtem a ústní zkouškou.
Podmínky pro udělení zápočtu: účast převyšující 70% a vypracování projektu. V rámci projektu je požadována krátká studie, jejímž cíle je srovnání analytického a simulačního přístupu k vybranému jednomu pravděpodobnostnímu modelu. Výchozí seznam modelů, které připadají v úvahu, bude specifikován v průběhu přednášky.
Získání zápočtu je podmínkou připuštění k ústní zkoušce. Zkouška spočívá v rozpravě o dvou zvolených širších tématech ze sylabu. Last update: Chvosta Petr, prof. RNDr., CSc. (11.06.2019)
|
|
||
van Kampen, N. G.: Stochastic Processes in Physics and Chemistry. Revised and Enlarged Edition, North-Holland, Amsterdam, (1992).
Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer, Berlin (1991). Second edition.
Risken, H.: The Fokker-Planck Equation, Springer, Berlin (1989).
Feller, W.: An Introduction to Probability Theory and Its Applications., Vol. 1., Third edition, Wiley, New York, 1968. Vol. 2., Second edition, Wiley, New York, 1971. Last update: Chvosta Petr, prof. RNDr., CSc. (19.05.2005)
|
|
||
přednáška + cvičení Last update: T_KVOF (28.03.2008)
|
|
||
Zkouška je ústní, spočívá v rozpravě o dvou zvolených tématech ze sylabu. Po volbě dvou témat se student samostatně připravuje k rozpravě. Poté následuje jeho expozé a diskuze. Zkouška trvá zpravidla okolo 30 minut. Důraz je kladen na celkové pochopení látky, nikoliv na detailní matematické zpracování jednotlivých pravděpodobnostních modelů. Last update: Chvosta Petr, prof. RNDr., CSc. (11.06.2019)
|
|
||
1. Probability and Random Variables Probability paradigms and paradoxes. Random variables. Their role in physics. Distribution function, characteristic function. Bernoulli, Gauss and Poisson distributions, other examples. Two random variables, joint and conditional distribution, correlations. Sequences of random variables. Limit theorems. Lévy distributions. Information entropy.
2. Stochastic Processes Discrete-time Markov chains (random walks, Ehrenfest model, branching process). Continuous-time Markov processes (Pauli master equation, Poisson process, dichotomic process, continuous-time random walks). Markov processes with continuous realizations (Wiener process, Ornstein-Uhlenbeck process). Point processes and renewal processes. Shot noises. Stationary processes, their spectra. Self-averaging. Stochastic differential equations, multiplicative and additive noise. Noise-induced transitions.
3. Diffusion Theory Thermal noise, Brownian motion. Langevin Equation and Fokker-Planck Equation. Biased diffusion. Boundaries. Dwelling time and first passage time. Methods of solution (Laplace transform, eigenfunction expansion, propagators, path integrals). Diffusion vs. trapping. Kramers equation. Fractal diffusion. Dichotomic diffusion, telegrapher's equation. Extremal properties of trajectories. Physics of random polymer chains.
4. Selected Applications in Physics Static (quenched) and dynamical disorder. Stochastic Schroedinger (Liouville) equation, optical Bloch equation, absorption. Harmonic oscillator with randomly modulated frequency, motional narrowing. Laser equation. Statistical properties of light. Percolation. Stochasticity versus chaotic behaviour of deterministic systems. Random-growth models. Molecular motors. Stochastic resonance.
5. Selected Applications in Other Fields Growth of populations (predator-prey systems, Verhulst model). Genetic models. Chemical systems (diffusion-controled reactions, coagulation). Migration of population. Spreading of diseases. Queueing models (systems of service). Hazardous plays. Assurance models.
Last update: Chvosta Petr, prof. RNDr., CSc. (19.05.2005)
|
|
||
Elementární partie kombinatoriky a teorie pravděpodobnosti. Množina elementárních jevů a její podmnožiny. Základní operace jako sčítání a násobení pravděpodobností. Příklady motivované karetními hrami, hracími kostkami, ruletou.
Last update: Chvosta Petr, prof. RNDr., CSc. (11.06.2019)
|