SubjectsSubjects(version: 850)
Course, academic year 2019/2020
   Login via CAS
Thermodynamics and Statistical Physics - NOFY036
Title in English: Termodynamika a statistická fyzika
Guaranteed by: Institute of Physics of Charles University (32-FUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:3/2 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. Mgr. František Šanda, Ph.D.
prof. RNDr. Roman Grill, CSc.
Class: M Mgr. MOD
M Mgr. MOD > Povinné
Classification: Physics > General Subjects
Incompatibility : NOFY031, NTMF043
Is pre-requisite for: NOOE119
Annotation -
Last update: T_FUUK (17.05.2001)
Thermodynamics and statistical physics Short version of lecture on thermodynamics and statistical physics.
Aim of the course -
Last update: GRILL/MFF.CUNI.CZ (08.05.2008)

The lecture aims to give an overview on basic concepts, methods and results of classical thermodynamics and statistical physics.

Course completion requirements -
Last update: prof. RNDr. Roman Grill, CSc. (13.06.2019)

Presentation of a given example at the exercise

Oral examination

Literature -
Last update: prof. RNDr. Roman Grill, CSc. (23.02.2011)

J. Kvasnica: Termodynamika (SNTL, Praha 1965).

J. Kvasnica: Statistická fyzika (Academia, Praha, 1998).

M. Noga, F. Čulík: Úvod do štatistickej fyziky a termodynamiky (UK Bratislava, 1978).

M. A. Leontovič: Úvod do thermodynamiky (Academia, Praha, 1957).

J. R. Waldram: The Theory of Thermodynamics (Cambridge University Press, 1991).

F. Reif: Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).

J. Brož, M. Rotter: Příklady z molekulové fyziky a termiky (MFF UK, Praha, 1980).

Teaching methods -
Last update: GRILL/MFF.CUNI.CZ (08.05.2008)

lecture + exercise

Requirements to the exam -
Last update: prof. RNDr. Roman Grill, CSc. (13.06.2019)

Mastering the lecture and practicing the exercises.

Syllabus -
Last update: T_FUUK (15.05.2003)

Methodical foundations. The relation of thermodynamics, statistical physics and mechanics, phase space, microstate and macrostate, statistical ensemble, time and ensemble averaging, fluctuations, homogeneous and heterogeneous systems, thermodynamic equilibrium, energy in thermodynamic systems, adiabatic processes, reversible and dissipative work, First law of thermodynamics, Second law of thermodynamics.

Statistical foundations. Probability description, distribution function, density of states, kinetic (master) equation, ergodic assumption, the principle of detailed balance.

Temperature, the meaning of temperature for large systems, thermal equilibrium, Boltzmann distribution, the meaning of temperature for small systems, partition function, negative temperature.

Entropy. Boltzmann-Gibbs definition, kanonical distribution, the law of increase of entropy, configurational entropy, the connection between equilibrium entropy and heat, Third law of thermodynamics.

Monatomic ideal gas. Quantisation of velocity and energy, velocity distribution, equation of state, heat capacities cV and cP, isothermal, adiabatic and Joule expansions, real gas.

Classical thermodynamics, extensive and intensive variables, heat engines, Carnot cycle, thermodynamic potentials, their properties and significance, thermodynamic relations, partial derivatives, Maxwell relations, relations involving cV and cP, electrical cell.

Classical statistical mechanics. Classical limit of quantum theory, Liouville theorem, density matrix, Liouville equation, equipartition theorem, fermions, bosons.

Statistical calculation of thermodynamic quantities. Energy, entropy, magnetic moment, pressure. Asymmetric diatomic gas, vacancies in solid, Gibbs paradox.

Systems with variable contents, Grand canonical (Gibbs) distribution, chemical potential, grand partition function (sum), Fermi-Dirac distribution, Bose-Einstein distribution, electron gas, Planck distribution, Debye theory of heat capacity.

Phase transitions and chemical equilibrium. Phase transitions classification, Clausius-Clapeyron equation, Ehrenfest equations, Landau theory of phase transition, the behavior near critical point. The equilibrion of the system of k-conponents and f-phases. Gibbs phase rule.

Computer simulation methods. Inter-molecular forces. Deterministic methods - molecular dynamics, stochastic methods - Monte Carlo.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html