|
|
|
||
Hopf bifurcation. Bifurcation of higher codimensions. Bifurcation of periodic solutions. Symmetry-breaking bifurcation. Large dynamical systems.
Last update: T_KNM (17.05.2004)
|
|
||
Theory and numerical methods of bifurcation analysis. Last update: JANOVSKY/MFF.CUNI.CZ (03.04.2008)
|
|
||
Govaerts, W.: Numerical methods for bifurcations of dynamical equilibria, SIAM 2000 Kuznetsov Y.A.: Elements of applied bifurcation theory, Appl. Math. Sci. 112, Spriger Verlag, New York 1998 Hale J., Kocak H.: Dynamics and bifurcations, Springer Verlag, New York 1991 Last update: T_KNM (16.05.2008)
|
|
||
Lectures in a lecture hall. Last update: T_KNM (16.05.2008)
|
|
||
Examination according to the syllabus. Last update: T_KNM (16.05.2008)
|
|
||
Hopf bifurcation: formulation of Hopf bifurcation Theorem, normal form analysis. Analytical techniques (a survay): Center Manifold and normal form reductions, Lyapunov-Schmidt Reduction. Numerical detection of Hopf bifurcation (construction of test functions).
Codim = 2 bifurcations: cusp, Takens-Bogdanov, Hopf-fold, Hopf-Hopf, degenerate Hopf bifurcation point. Dynamical interpretation (normal form analysis), numerical detection.
Periodic solutions: Poincaré map, stability of an periodic orbit (cycle), variational equation about a cycle. Bifurcation of periodic solutions: fold, period doubling, torus bifurcation.
Symmetry of dynamical systems: group of symmetries (examples), equivariance, equivariant dimensional reduction, symmetry-breaking.
Large dynamical systems: Recursive Projection Method, continuation of invariant subspaces. Last update: T_KNM (16.05.2008)
|
|
||
There are no special entry requirements. Last update: T_KNM (16.05.2008)
|