SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Bifurcation Analysis of Dynamical Systems 1 - NNUM200
Title: Bifurkační analýza dynamických systémů 1
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Vladimír Janovský, DrSc.
Classification: Mathematics > Numerical Analysis
Interchangeability : NMNV561
Is incompatible with: NMNV561
Is interchangeable with: NMNV561
Annotation -
Examples, motivation. Numerical continuation. Dimensional reduction. Classification of singularities. Dynamical systems: steady states.
Last update: JANOVSKY (24.04.2006)
Aim of the course -

Continuation of steady states.

Last update: JANOVSKY/MFF.CUNI.CZ (03.04.2008)
Literature - Czech

Govaerts, W.: Numerical methods for bifurcations of dynamical equilibria, SIAM 2000

Kuznetsov Y.A.: Elements of applied bifurcation theory, Appl. Math. Sci. 112, Spriger Verlag, New York 1998

Hale J., Kocak H.: Dynamics and bifurcations, Springer Verlag, New York 1991

Last update: T_KNM (16.05.2008)
Teaching methods -

Lectures in a lecture hall.

Last update: T_KNM (16.05.2008)
Requirements to the exam -

Examination according to the syllabus.

Last update: T_KNM (16.05.2008)
Syllabus -

Motivation. Examples of dynamical systems (ecology, chemistry, mechanics, population dynamics, etc.).

Manifolds and its numerical continuation: tangent space, solution manifold and its parametrization, continuation, predictor-corrector technique, adaptive step-length.

Dimensional reduction: singular point, corank, bifurcation equation, Lyapunov-Schmidt reduction and its modifications.

Classification of singular points: elements of singularity theory. Detecting singular points: test functions.

Dynamical systems: vector field, phase flow, steady state, linearization, asymptotic stability, topological equivalence, Hartman-Grobman Theorem.

One-parameter Bifurcation (motivation): Saddle-node (fold), Hopf bifurcation.

Last update: T_KNM (17.05.2008)
Entry requirements -

There are no special entry requirements.

Last update: T_KNM (16.05.2008)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html