SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
Numerical Solution of Evolutionary Equations - NNUM112
Title in English: Numerické řešení evolučních rovnic
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:2/2 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Václav Kučera, Ph.D.
Classification: Mathematics > Numerical Analysis
Interchangeability : NMNV536
Is incompatible with: NMNV536
Is interchangeable with: NMNV536
Annotation -
Last update: RNDr. Jan Kofroň, Ph.D. (26.04.2006)
The fundamental theoretical and practical aspects of a solution of evolutional problems. Survey of most used numerical methods.
Aim of the course -
Last update: KUCERA4 (17.09.2012)

Overview of numerical methods for the solution of evolutionary problems.

Literature - Czech
Last update: KUCERA4 (17.09.2012)

REKTORYS K. Metoda časové diskretizace a parciální diferenciální rovnice, Teoretická knižnice inženýra, SNTL, Praha 1985

THOMÉE V. Galerkin finite element methods for parabolic problems, vol. 25, Springer-Verlag, Berlin Heidelberg, 2006.

HUNDSDORFER W., VERWER J.G.Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Series in Comput. Math. 33, Springer, 2003

Teaching methods -
Last update: T_KNM (17.05.2008)

Lectures in the classroom.

Requirements to the exam -
Last update: KUCERA4 (02.09.2013)

Examination according to the syllabus.

Syllabus -
Last update: KUCERA4 (17.09.2012)

Rothe method for parabolic problems. Existence and regularity of solutions, discretization error of the Rothe method.

Higher order discretizations of time derivatives, discontinuous Galerkin method in time. Discretization of hyperbolic problems.

Nonstationary advection and convection problems: Gibbs phenomenon, stabilization by artificial diffusion, semi-Lagrangian methods.

Evolutionary problems on time-dependent domains: ALE method, level set methods.

Entry requirements -
Last update: KUCERA4 (17.09.2012)

Absolving the lecture Finite element methods 1 is required.

Charles University | Information system of Charles University |