|
|
|
||
Theory and praxis of function approximation, interpolation,
numerical quadrature.
Last update: Kofroň Jan, RNDr., Ph.D. (26.04.2006)
|
|
||
Getting basic knowledge about approximation of functions, interpolation and quadrature. Last update: KOFRON/MFF.CUNI.CZ (23.04.2008)
|
|
||
Práger M.: Numerická matematika, SPN, l98l Haemmerlin G., Hoffmann K.H.: Numerical Mathematics, Springer Verlag, l99l Last update: T_KNM (17.05.2008)
|
|
||
Lectures in the classroom. Last update: T_KNM (17.05.2008)
|
|
||
Examination according to the syllabus. Last update: T_KNM (17.05.2008)
|
|
||
The approximation of functions. The best approximation in a normed linear space. The best uniform approximation of continuous functions, Remez algorithm, Jackson's theorems. The best approximation in the Hilbert space, approximation in the space En, least square method, approximation of periodic functions. The general convergence problem. Convergence of interpolating polynomials. The numerical calculation of integrals, Gauss' quadrature, Newton-Cotes quadrature, Euler-MacLaurin formula, Romberg quadrature. Convergence of quadrature formulas. Last update: T_KNM (17.05.2008)
|
|
||
There are no special entry requirements. Last update: T_KNM (17.05.2008)
|