SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Numerical Methods of Mathematical Analysis - NNUM011
Title: Numerické metody matematické analýzy
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Josef Kofroň, CSc.
Classification: Mathematics > Numerical Analysis
Interchangeability : NMNV543
Is incompatible with: NMNV543
Is interchangeable with: NMNV543
Annotation -
Theory and praxis of function approximation, interpolation, numerical quadrature.
Last update: Kofroň Jan, RNDr., Ph.D. (26.04.2006)
Aim of the course -

Getting basic knowledge about approximation of functions, interpolation and quadrature.

Last update: KOFRON/MFF.CUNI.CZ (23.04.2008)
Literature - Czech

Práger M.: Numerická matematika, SPN, l98l

Haemmerlin G., Hoffmann K.H.: Numerical Mathematics, Springer Verlag, l99l

Last update: T_KNM (17.05.2008)
Teaching methods -

Lectures in the classroom.

Last update: T_KNM (17.05.2008)
Requirements to the exam -

Examination according to the syllabus.

Last update: T_KNM (17.05.2008)
Syllabus -

The approximation of functions. The best approximation in a normed linear space. The best uniform approximation of continuous functions, Remez algorithm, Jackson's theorems. The best approximation in the Hilbert space, approximation in the space En, least square method, approximation of periodic functions.

The general convergence problem. Convergence of interpolating polynomials.

The numerical calculation of integrals, Gauss' quadrature, Newton-Cotes quadrature, Euler-MacLaurin formula, Romberg quadrature. Convergence of quadrature formulas.

Last update: T_KNM (17.05.2008)
Entry requirements -

There are no special entry requirements.

Last update: T_KNM (17.05.2008)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html