SubjectsSubjects(version: 849)
Course, academic year 2019/2020
   Login via CAS
Applications of Computers in Geometry Teaching II - NMUM362
Title in English: Aplikace počítačů ve výuce geometrie II
Guaranteed by: Department of Mathematics Education (32-KDM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: summer
E-Credits: 2
Hours per week, examination: summer s.:0/2 C [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Jarmila Robová, CSc.
Class: M Bc. DGZV
M Bc. DGZV > Doporučené volitelné
M Bc. MZV
M Bc. MZV > Doporučené volitelné
Classification: Mathematics > Mathematics, Algebra, Differential Equations, Potential Theory, Didactics of Mathematics, Discrete Mathematics, Math. Econ. and Econometrics, External Subjects, Financial and Insurance Math., Functional Analysis, Geometry, General Subjects, , Real and Complex Analysis, Mathematics General, Mathematical Modeling in Physics, Numerical Analysis, Optimization, Probability and Statistics, Topology and Category
Annotation -
Last update: T_KDM (05.05.2014)
The seminar is dedicated to the use of geometric 3D software (Cabri 3D, GeoGebra) in teaching of analytic geometry and stereometry at secondary school.
Aim of the course -
Last update: T_KDM (03.05.2012)

This course helps to obtain theoretical background for teaching mathematics at high school.

Course completion requirements - Czech
Last update: doc. RNDr. Jarmila Robová, CSc. (07.01.2019)

Volitelný předmět je vyučován, zapíše-li se alespoň pět studentů.

1. Aktivní účast na seminářích, povoleny jsou nejvýše tři absence. V odůvodněných případech lze vyšší počet absencí nahradit vypracováním seminárních úkolů.

2. Vypracování a prezentace závěrečné seminární práce.

Literature -
Last update: T_KDM (03.05.2012)

User manuals and tutorials of 3D software.

Teaching methods -
Last update: T_KDM (03.05.2012)

Optional seminar.

Syllabus -
Last update: T_KDM (03.05.2012)

Basic instructions and constructions of 3D geometry. Subspaces and their mutual positions. Elementary solids, their sections and surface areas. Space transformations. Advanced functions of software (changing perspective and work area, platonic solids).

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html