SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
Mathematical Analysis IV - NMUM202
Title in English: Matematická analýza IV
Guaranteed by: Department of Mathematics Education (32-KDM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018
Semester: summer
E-Credits: 5
Hours per week, examination: summer s.:2/2 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: RNDr. Jakub Staněk, Ph.D.
RNDr. Martin Rmoutil, Ph.D.
Class: M Bc. MZV
M Bc. MZV > Povinné
M Bc. MZV > 2. ročník
Classification: Mathematics > Mathematics, Algebra, Differential Equations, Potential Theory, Didactics of Mathematics, Discrete Mathematics, Math. Econ. and Econometrics, External Subjects, Financial and Insurance Math., Functional Analysis, Geometry, General Subjects, , Real and Complex Analysis, Mathematics General, Mathematical Modeling in Physics, Numerical Analysis, Optimization, Probability and Statistics, Topology and Category
Interchangeability : NUMP006
Annotation -
Last update: T_KDM (14.09.2013)
Basic course in mathematical analysis for second year students.
Course completion requirements - Czech
Last update: RNDr. Martin Rmoutil, Ph.D. (13.02.2019)

K získání započtu je třeba úspešně napsat dvě písemné práce. První bude v polovině semestru a druhá na jeho konci.

Každá písemná práce bude obsahovat tři úlohy. K jejímu úspešnému napsání je třeba vyřešit správně alespoň dvě z těchto úloh.

Pokud bude student neúspěšný při prvním pokusu, má nárok na náhradní termín.

Zápočet je nutnou podmínkou k účasti na zkoušce.

Literature -
Last update: T_KDM (29.04.2013)
  • Kopáček, J. Matematická analýza nejen pro fyziky II. Matfyzpress, Praha, 2007.
  • Kopáček, J. Příklady z matematiky nejen pro fyziky II. Matfyzpress, Praha, 2006.
  • Veselý, J. Základy matematické analýzy I. Matfyzpress, Praha, 2004.
  • Veselý, J. Základy matematické analýzy II. Matfyzpress, Praha, 2009.
  • Došlá, Z. a kol. Diferenciální počet funkcí více proměnných s programem Maple V. Brno, 1999. Dostupné z < http://www.math.muni.cz/~plch/mapm/index_cd.html>.
  • Černý, I. Úvod do inteligentního kalkulu 2. Academia, Praha, 2005.
  • Brabec, J., Hrůza, B. Matematická analýza II. SNTL/Alfa, Praha, 1986.
  • Trench, W. F. Introduction to Real Analysis. Dostupné z < http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF >
  • Hairer, E., Wanner, G. Analysis by its History. Springer, 2008.

Requirements to the exam - Czech
Last update: RNDr. Martin Rmoutil, Ph.D. (13.02.2019)

Zkouška bude probíhat písemnou formou na dvě části: Početní a teoretická část. V případě nerozhodného výsledku může dojít také na část ústní, na které se rozhodne o známce.

V početní části budou tři až čtyři úlohy na řady a diferenciální rovnice. Obtížnost zvolených úloh bude nastavena adekvátně vzhledem k látce probrané na cvičení.

Teoretická část bude obsahovat převážně látku probíranou na přednášce, v menší míře též jenoduché originální úlohy, jejichž řešení budou typicky založena na aplikaci standardních metod.

Hodnocení bude probíhat standardním bodovacím systémem a budou stanoveny orientační podmínky pro složení zkoušky.

Požadavky u případné ústní části odpovídají sylabu předmětu v rozsahu, který byl prezentován na přednášce. Důraz bude kladen na porozumění a schopnost vyjádřit matematické myšlenky.

Syllabus -
Last update: RNDr. Martin Rmoutil, Ph.D. (17.06.2019)

Uniform konvergence of sequences and series interchange of limits, commutativity of limits with derivatives. Power series in complex domain,

Taylor series, diferentiation and integration of power series, domains of convergence.

Systems of differential equations.

Functions of several variables, limits and continuity. Partial derivatives, total derivative. Local and constrained extrema.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html