|
|
|
||
The basic elements of ergodic theory are presented. We mainly focus on entropy and recurrence. Tight
relationship between ergodic theory and the theory of finite-states stationary processes will be presented.
Last update: T_KPMS (16.05.2013)
|
|
||
To present the broadly used notion of entropy in the frame of the ergodic theory. Last update: T_KPMS (16.05.2013)
|
|
||
Oral exam. Last update: Zichová Jitka, RNDr., Dr. (29.10.2019)
|
|
||
K. Petersen: Ergodic Theory, Cambridge Univ. Press, 1983 P. Shields: The Ergodic Theory of Discrete Sample Path, Graduate Studies in Mathematics, AMS, 1996 Last update: T_KPMS (16.05.2013)
|
|
||
Lecture. Last update: T_KPMS (16.05.2013)
|
|
||
According to the sylabus and the content of the lecture. Last update: Zichová Jitka, RNDr., Dr. (29.10.2019)
|
|
||
1. Probability (measure-theoretical) dynamical systems, finite-states stationary processes - definitions, examples, ergodicity, isomorfismus of probability dynamical systems, factorization 2. Entropy of the process, entropy of the system, strictly positive entropy - Kolmogorov property 3. Kolmogorov-Sinai theorem on generators, Shannon-McMillan-Breimann theorem 4. Recurrence, Ornstein-Weiss theorem, Lempel-Ziv algorithm for data compression Last update: T_KPMS (16.05.2013)
|
|
||
Basics of mathematical analysis, measure tehory, Lebesgue integral. Basics of probability theory and linear algebra. Last update: Zichová Jitka, RNDr., Dr. (05.06.2019)
|