SubjectsSubjects(version: 957)
Course, academic year 2023/2024
   Login via CAS
Entropy in Probability Dynamical Systems - NMTP569
Title: Entropie v pravděpodobnostních dynamických systémech
Guaranteed by: Department of Probability and Mathematical Statistics (32-KPMS)
Faculty: Faculty of Mathematics and Physics
Actual: from 2019
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Guarantor: Mgr. Michal Kupsa
Teacher(s): Mgr. Michal Kupsa
Class: M Mgr. PMSE
M Mgr. PMSE > Povinně volitelné
Classification: Mathematics > Probability and Statistics
Is interchangeable with: NSTP060
Annotation -
The basic elements of ergodic theory are presented. We mainly focus on entropy and recurrence. Tight relationship between ergodic theory and the theory of finite-states stationary processes will be presented.
Last update: T_KPMS (16.05.2013)
Aim of the course -

To present the broadly used notion of entropy in the frame of the ergodic theory.

Last update: T_KPMS (16.05.2013)
Course completion requirements -

Oral exam.

Last update: Zichová Jitka, RNDr., Dr. (29.10.2019)
Literature - Czech

K. Petersen: Ergodic Theory, Cambridge Univ. Press, 1983

P. Shields: The Ergodic Theory of Discrete Sample Path, Graduate Studies in Mathematics, AMS, 1996

Last update: T_KPMS (16.05.2013)
Teaching methods -

Lecture.

Last update: T_KPMS (16.05.2013)
Requirements to the exam -

According to the sylabus and the content of the lecture.

Last update: Zichová Jitka, RNDr., Dr. (29.10.2019)
Syllabus -

1. Probability (measure-theoretical) dynamical systems, finite-states stationary processes - definitions, examples, ergodicity, isomorfismus of probability dynamical systems, factorization

2. Entropy of the process, entropy of the system, strictly positive entropy - Kolmogorov property

3. Kolmogorov-Sinai theorem on generators, Shannon-McMillan-Breimann theorem

4. Recurrence, Ornstein-Weiss theorem, Lempel-Ziv algorithm for data compression

Last update: T_KPMS (16.05.2013)
Entry requirements -

Basics of mathematical analysis, measure tehory, Lebesgue integral. Basics of probability theory and linear algebra.

Last update: Zichová Jitka, RNDr., Dr. (05.06.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html