SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Selected Topics on Measure Theory - NMTP535
Title: Vybrané partie z teorie míry
Guaranteed by: Mathematical Institute of Charles University (32-MUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: prof. RNDr. Jan Rataj, CSc.
Teacher(s): prof. RNDr. Jan Rataj, CSc.
Class: M Mgr. PMSE
M Mgr. PMSE > Volitelné
Classification: Mathematics > Real and Complex Analysis
Incompatibility : NMAT010
Interchangeability : NMAT010
Is interchangeable with: NMAT010
Annotation -
Selected results completing the lecture NMMA203 Measure and Integration Theory, with respect to applications in probability theory> Hausdorff measure and dimension, Lebesgue density theorem, Haar measure, disintegration theorem.
Last update: T_MUUK (27.04.2016)
Aim of the course -

To teach the students of the master studies in Probability, Mathematical Statistics and Econometrics certain approaches useful in probability theory

Last update: T_MUUK (27.04.2016)
Course completion requirements - Czech

Ústní zkouška.

Last update: Zichová Jitka, RNDr., Dr. (14.06.2019)
Literature -

Morgan F.: Geometric Measure Theory: a Beginner's Guide.Academic Press, San Diego 1988

Mattila P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge 1995

Krantz S.G., Parks H.R.: Geometric Integration Theory. Birkhäuser, Boston 2008

Last update: T_MUUK (27.04.2016)
Teaching methods -

Lecture.

Last update: G_M (16.05.2013)
Requirements to the exam - Czech

Zkouška probíhá ústní formou. Její součástí je prezentace vyřešeného předem zadaného cvičení a zodpovězení otázek týkajících se odpřednesené látky.

Last update: Rataj Jan, prof. RNDr., CSc. (12.10.2018)
Syllabus -

1. k-dimensional Hausdorff measure, Hausdorff dimension, covering theorems, Lebesgue density theorem.

2. Invariant measures on a compact topological group, Haar measure, integral-geometric measure.

3. Disintegration theorem for measures on Cartesian products, existence of regular versions of conditional probabilities, random measure.

Last update: T_MUUK (27.04.2016)
Entry requirements -

Basic cousres of mathematical analysis and measure and integration theory.

Last update: Rataj Jan, prof. RNDr., CSc. (15.06.2021)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html