SubjectsSubjects(version: 837)
Course, academic year 2018/2019
   Login via CAS
Mathematical Methods in Fluid Mechanics 2 - NMNV538
Title in English: Matematické metody v mechanice tekutin 2
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2014
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: doc. RNDr. Jiří Felcman, CSc.
Class: M Mgr. MOD
M Mgr. MOD > Povinně volitelné
M Mgr. NVM
M Mgr. NVM > Povinně volitelné
Classification: Mathematics > Numerical Analysis
Incompatibility : NMOD201
Interchangeability : NMOD201
Annotation -
Last update: T_KNM (14.04.2015)
Mathematical theory of compressible flow. Equations describing the flow. The Euler equations. Properties of the Euler equations. Cauchy problem. Weak solutions. Finite volume method. Finite volume mesh. Derivation of a general finite volume scheme. Properties of the numerical flux. Construction of some numerical fluxes. The Godunov method.
Literature - Czech
Last update: T_KNM (15.09.2013)

Feistauer M.: Mathematical Methods in Fluid Dynamics. Longman Scientific-Technical, Harlow, l993

Feistauer M., Felcman J., Straškraba I.: Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Harlow, 2003.

Felcman J.: Numerické metody v mechanice tekutin 2, aktualizovaný internetový učební text

Godlewski E., Raviart P. A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, Number 118 in Applied Mathematical Sciences, Springer, New York 1996

Smoller J.: Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983

Requirements to the exam -
Last update: doc. RNDr. Jiří Felcman, CSc. (13.10.2017)

The exam is written and oral. The examination requirements are given by the topics in the syllabus, in the extent to which they they were taught in course.

Syllabus -
Last update: T_KNM (14.04.2015)

Mathematical theory of compressible flow. Equations describing the flow. The Euler equations. Properties of the Euler equations. Cauchy problem. Weak solutions. Finite volume method. Finite volume mesh. Derivation of a general finite volume scheme. Properties of the numerical flux. Construction of some numerical fluxes. The Godunov method.

Entry requirements -
Last update: doc. RNDr. Jiří Felcman, CSc. (31.05.2018)

Basic knowledge of the theory of partial differential equations

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html