|
|
|
||
Stabilized methods for the numerical solution of convection-diffusion equations (SUPG method, local projection
method).
Least squares method.
Numerical solution of saddle point problems, mixed finite element method for the numerical solution of the
Poisson equation.
Maximum norm error estimates.
Last update: T_KNM (30.04.2015)
|
|
||
Credit is not required for the exam.
Course credit is awarded for active participation in seminars (solving at least one problem at the blackboard, maximum three absences) If the conditions for obtaining the credit for active participation in seminars are not fulfilled, the credit can be obtained for the successful written test (at least 50% points). The credit test can be repeated twice. Last update: Kučera Václav, doc. RNDr., Ph.D. (29.10.2019)
|
|
||
H.-G. Roos, M. Stynes, L. Tobiska: Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems, 2nd ed., Springer-Verlag, 2008
P.B. Bochev, M.D. Gunzburger: Least-squares finite element methods, Springer-Verlag, 2009
F. Brezzi, M. Fortin: Mixed and hybrid finite element methods, Springer-Verlag, 1991
S.C. Brenner, R.L. Scott: The mathematical theory of finite element methods, 3rd ed., Springer-Verlag, 2008
B. Jiang: The least-squares finite element method, Springer-Verlag, 1998
L.B. Wahlbin: Local behavior in finite element methods, in: Handbook of numerical analysis, vol. II (P.G. Ciarlet, J.L. Lions - eds.), North-Holland, 1991 Last update: Kučera Václav, doc. RNDr., Ph.D. (29.10.2019)
|
|
||
The exam is oral.
The requirements for the exam correspond to the syllabus of the subject in the extent that was presented at the lecture. Last update: Kučera Václav, doc. RNDr., Ph.D. (29.10.2019)
|
|
||
SUPG method.
Local projection method.
Least squares method.
Numerical solution of saddle point problems.
Mixed finite element method for the numerical solution of the Poisson equation.
Maximum norm error estimates. Last update: Kučera Václav, doc. RNDr., Ph.D. (15.01.2019)
|
|
||
The students should possess knowledge on the level of the subjects NMNV405 Finite Element Method 1 NMNV401 Functional Analysis Last update: Knobloch Petr, prof. Mgr., Dr., DSc. (15.05.2018)
|