SubjectsSubjects(version: 806)
Course, academic year 2017/2018
   Login via CAS
Introduction to the Finite Element Method - NMNM336
Czech title: Úvod do metody konečných prvků
Guaranteed by: Department of Numerical Mathematics (32-KNM)
Faculty: Faculty of Mathematics and Physics
Actual: from 2015
Semester: summer
E-Credits: 5
Hours per week, examination: summer s.:2/2 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Jiří Felcman, CSc.
Class: M Bc. OM
M Bc. OM > Zaměření NUMMOD
M Bc. OM > Povinně volitelné
Classification: Mathematics > Numerical Analysis
In complex pre-requisite: NMNM349
Annotation -
Last update: G_M (28.05.2012)

Foundations of the Finite Element Method. Recommended elective course for bachelor's program in General Mathematics, specialization Mathematical Modelling and Numerical Analysis.
Literature - Czech
Last update: G_M (28.05.2012)

P.G. Ciarlet: Basic error estimates for elliptic problems. In: P.G. Ciarlet and J.L. Lions (eds.), Handbook of Numerical Analysis, vol. 2, North-Holland, Amsterdam, 1991, pp. 17-351

S.C. Brenner, L.R. Scott: The Mathematical Theory of Finite Element Methods, Springer, New York, 1994 (1st ed.), 2002 (2nd ed.), 2008 (3rd ed.)

Syllabus -
Last update: T_KNM (27.04.2015)

Introduction to the finite element method. Discretization of general elliptic second order partial differential equation. Finite element space construction. Cea theorem, convergence, superconvergence, adaptivity, maximum principle. Implementation of finite element method in computers, properties of linear systems coming from finite element discretization, discrete solution computing.

Charles University | Information system of Charles University |