Pseudomonotone and monotone operators, set-valued mappings and applications to nonlinear parabolic partial differential equations and inequalities.
Last update: T_MUUK (14.05.2013)
Pseudomonotónní a monotónní operátory, mnohoznačné operátory a aplikace na nelineární parabolické parciální diferenciální rovnice a nerovnice.
Last update: T_MUUK (14.05.2013)
Aim of the course -
To present at least a bit of Nonlinear Differential Equations and Inequalities.
Last update: T_MUUK (14.05.2013)
Naučit studenty alespoň trochu nelineární diferenciální rovnice a nerovnice
Last update: T_MUUK (14.05.2013)
Course completion requirements -
The will be an oral exam at the end of the semester. The student should provide the knowledge of the topics presented during the semester. Student will get credits from tutorials provided he actively participated in the tutorials.
Last update: Bulíček Miroslav, doc. RNDr., Ph.D. (11.06.2019)
Předmět je zakončen ústní zkouškou z látky probrané během semestru. Zápočet se uděluje za aktivní účast na cvičení.
Last update: Bulíček Miroslav, doc. RNDr., Ph.D. (11.06.2019)
Literature -
T.Roubíček: Nonlinear differenctial equations with applications. Birkhauser, Basel, 2005.
Last update: T_MUUK (14.05.2013)
T.Roubíček: Nonlinear differenctial equations with applications. Birkhauser, Basel, 2005.
Last update: T_MUUK (14.05.2013)
Teaching methods -
Lecture and exercises
Last update: T_MUUK (14.05.2013)
Přednáška a cvičení
Last update: T_MUUK (14.05.2013)
Syllabus -
Continuing the lecture NDIR042, after presentation of auxiliary tools from theory of Bochner spaces of Banach-space valued functions and Aubin-Lions' theorem, it will have analogous structure as the lecture mentioned. Hovewer, beside Galerkin's method, also Rothe's method of semidiscretization in time is presented. Abstract initial-value or periodic problems are applied to initial- (or periodic) boundary-value problems for concrete quasi- or semi-linear parabolic partial differential equations or inequalities. So-called doubly nonlinear problems (i.e. time derivative is involved in a nonlinear manner) are addressed, too.
Last update: T_MUUK (14.05.2013)
Navazuje na přednásku NDIR042 a po presentaci pomocného aparátu z teorie Bochnerových prostorů fukcí s hodnotami v Banachových prostorech a Aubin-Lionsovy věty má analogickou strukturu. Krom Galerkinovy metody je ovšem presentována i Rotheova metoda časové semidiskretizace. Abstraktní počáteční či periodické úlohy jsou aplikovány na počáteční (či periodické) a okrajové úlohy pro konkrétní kvazi- či semi-lineární parabolické parciální diferenciální rovnice či nerovnice. Jsou též probírány "dvojitě nelineární" úlohy (tj. s nelinearitou i v časové derivaci).