|
|
|
||
Non-repeated universal elective course.
Last update: Kaplický Petr, doc. Mgr., Ph.D. (05.06.2018)
|
|
||
Oral exam at the end of the course. Last update: Šmíd Dalibor, Mgr., Ph.D. (03.09.2019)
|
|
||
Main reference: course's lecture notes https://www.asc.tuwien.ac.at/~nzamponi/LectureNotes-SS2015.pdf
Other references:
A. Jüngel. Transport Equations for Semiconductors. Lecture Notes in Physics, Vol 773. Spinger, Berlin, 2009. N.W. Ashcroft, N. D. Mermin. Solid State Physics. Saunders College, Philadelfia, 1976. R. Shankar. Principles of Quantum Mechanics. Vol. 233, Plenum Press, New York, 1994. Last update: Šmíd Dalibor, Mgr., Ph.D. (03.09.2019)
|
|
||
Title: Transport models for semiconductors.
Aim: to provide an overview of the main kinetic and macroscopic models for semiclassical and quantum transport in semiconductors.
Topics: short introduction to semiclassical Boltzmann equation (on request); semiclassical macroscopic models (drift-diffusion and hydrodynamic equations); quantum models (quantum kinetic and quantum hydrodynamic equations). Last update: Šmíd Dalibor, Mgr., Ph.D. (01.09.2019)
|
|
||
Basic knowledge of Partial Differential Equations and of Quantum Mechanics. Last update: Šmíd Dalibor, Mgr., Ph.D. (28.10.2019)
|