SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
Computer Algebra - NMMB204
Title in English: Počítačová algebra
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018 to 2018
Semester: summer
E-Credits: 6
Hours per week, examination: summer s.:3/1 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. Mgr. et Mgr. Jan Žemlička, Ph.D.
Class: M Bc. MMIB
M Bc. MMIB > Povinně volitelné
M Bc. MMIB > 2. ročník
M Bc. MMIT
M Bc. MMIT > Povinně volitelné
Classification: Mathematics > Algebra
Incompatibility : NMIB003
Interchangeability : NMIB003
Is pre-requisite for: NMMB349
Annotation -
Last update: G_M (16.05.2012)
Required course for bachelor's program in Information security. The course contains description of algorithms used in computer systems for symbolic manipulation. It begins with analysis of the simplest algebraic algorithms and shows how to use theoretic results for their improvement. Algorithms for polynomials over integers, rational numbers or finite fields are emphasized.
Course completion requirements - Czech
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (05.03.2018)

Zápočet student získá za odevzdání zadaných domácích úkolů. Charakter zápočtu umožňuje jeho opakování.

Literature -
Last update: RNDr. Alexandr Kazda, Ph.D. (08.02.2019)

L. Barto, D. Stanovský: Počítačová algebra, Karolinum, 2011.

V. Shoup: A Computational Introduction to Number Theory and Algebra, Cambridge University Press, 2nd edition 2008.

F. Winkler: Polynomial Algorithms in Computer Algebra, Springer 1996.

K. Geddes, S. Czapor, G. Labahn: Algorithms for computer algebra, Kluwer Academic Publishers, 1992.

G. von zur Gathen: Modern computer algebra, Cambridge Univ. Press 1999

D. Knuth: The art of computer programming, vol. 1, Fundamental algorithms, Addison-Wesley, 3rd edition 1997.

Requirements to the exam - Czech
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (05.03.2018)

Zkouška je písemná. Zkoušený dostane dvě otázky, na které si písemně během jedné až dvou hodin připraví odpovědi. První otázka bude vyžadovat formulaci a důkaz zprávnosti algoritmu, případně formulování a důkaz některého ze souvisejících teoretických problémů, druhá otázka se zaměří na odhad časové složitosti (jiného) algoritmu.

Syllabus -
Last update: RNDr. Alexandr Kazda, Ph.D. (08.02.2019)

1. Data representation, basic operations with numbers and polynomials, Karacuba's and extended Euclid's algorithm.

2. Modular representation, algorithms for Chinese Remainder Theorem. Fast Fourier transform, fast multiplication of polynomials.

3. Newton's method and fast division of polynomials.

4. Greatest common divisor: Primitive polynomials and Gauss' lemma, polynomial remainder sequences, modular algorithm.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html