SubjectsSubjects(version: 944)
Course, academic year 2023/2024
   Login via CAS
Introduction to Approximation Theory 1 - NMMA565
Title: Úvod do teorie aproximací 1
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English, Czech
Teaching methods: full-time
Teaching methods: full-time
Guarantor: prof. RNDr. Luboš Pick, CSc., DSc.
Class: M Mgr. MA
M Mgr. MA > Volitelné
Classification: Mathematics > Real and Complex Analysis
Incompatibility : NRFA074
Interchangeability : NRFA074
Is interchangeable with: NRFA074
Annotation -
Last update: T_KMA (02.05.2013)
Basic course on theory of approximations. Suitable for master students of mathematical analysis.
Course completion requirements - Czech
Last update: prof. RNDr. Luboš Pick, CSc., DSc. (29.09.2017)

Ke zkoušce není potřeba zápočet.

Literature - Czech
Last update: T_KMA (02.05.2013)

E.W. Cheney:Introduction to Approximation Theory, McGraw-Hill, New York, 1966

R. DeVore, G.G. Lorentz: Constructive Approximation, Springer, Berlin, 1993

Syllabus -
Last update: doc. Mgr. Petr Kaplický, Ph.D. (09.06.2015)

Basic objectives of theory of approximation, proximinity, existence of the best approximation in normed linear spaces, convexity and its consequences, unicity of the best approximation in normed linear spaces, metric projection, interpolation of functions by polynomials, optimal distribution, the Weierstrass theorem, the Korovkin theorem, the Stone-Weierstrass theorems, Hermitte interpolation, the Fejer theorem, the Haar condition and its equivalence to the unicity of the best approximation.

Charles University | Information system of Charles University |