|
|
|
||
Continuation of the course General Topology 1. It is also necessary for the study branch Mathematical Structures. It provides an information about more advaced parts of the discipline.
Last update: T_KMA (25.04.2013)
|
|
||
The exam is oral and its content is captured in the sylabus.
"Zapocet" is given to anyone who passes the exam. Last update: Spurný Jiří, prof. RNDr., Ph.D., DSc. (12.01.2024)
|
|
||
R. Engelking, General Topology, PWN Warszawa 1977 J. L. Kelley, General Topology, D. Van Nostrand, New York 1957 (ruský překlad Obščaja Topologija, Nauka, Moskva 1968) E. Čech, Topological Spaces, Academia, Praha 1966 Last update: Vejnar Benjamin, doc. Mgr., Ph.D. (29.10.2019)
|
|
||
1. Cech-complete spaces: Definition, Frolik's characterization,
Baire theorem.
2. Paracompact spaces: Stone theorem, equivalent descriptions, fine uniformity.
3. Metrization theorems: Urysohn, Bing-Nagata-Smirnov, Bing.
4. Connectedness and local conectedness: components, quasi-components,
basic theory of continua.
5. Topological groups: Quotient groups, connected groups.
5. Disconnectedness: Totally disconnected spaces, zero-dimensional spaces,
strongly zero-dimensional spaces.
6. Dimension theory: Dimensions dim, ind, Ind, basic inequalities,
sum theorem for dim, dimension of metric case and of R^n. Last update: Kaplický Petr, doc. Mgr., Ph.D. (08.12.2017)
|
|
||
The knowledge of the theory of topological spaces in the range of the lecture Topology 1. Last update: Vejnar Benjamin, doc. Mgr., Ph.D. (29.10.2019)
|