SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
General Topology 2 - NMMA462
Title in English: Obecná topologie 2
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2018 to 2018
Semester: summer
E-Credits: 6
Hours per week, examination: summer s.:2/2 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: doc. RNDr. Petr Holický, CSc.
Class: M Mgr. MA
M Mgr. MA > Volitelné
Classification: Mathematics > Topology and Category
Incompatibility : NMAT042
Interchangeability : NMAT042
Annotation -
Last update: T_KMA (25.04.2013)
Continuation of the course General Topology 1. It is also necessary for the study branch Mathematical Structures. It provides an information about more advaced parts of the discipline.
Course completion requirements - Czech
Last update: doc. RNDr. Petr Holický, CSc. (10.05.2018)

Konání zkoušky je podmíněno získáním zápočtu. Zkouška je ústní a její obsah odpovídá sylabu tohoto předmětu v rozsahu, který byl prezentován na přednášce.

Zápočet je udělen na základě aktivní účasti na cvičení s nejvýše třemi neomluvenými absencemi.

Povaha tohoto požadavku vylučuje opakování kontroly studia.

Literature - Czech
Last update: T_KMA (25.04.2013)

R. Engelking, General Topology, PWN Warszawa 1977

J. L. Kelley, General Topology, D. Van Nostrand, New York 1957 (ruský překlad Obščaja Topologija, Nauka, Moskva 1968)

E. Čech, Topological Spaces, Academia, Praha 1966

Syllabus -
Last update: doc. Mgr. Petr Kaplický, Ph.D. (08.12.2017)

1. Cech-complete spaces: Definition, Frolik's characterization,

Baire theorem.

2. Paracompact spaces: Stone theorem, equivalent descriptions, fine uniformity.

3. Metrization theorems: Urysohn, Bing-Nagata-Smirnov, Bing.

4. Connectedness and local conectedness: components, quasi-components,

basic theory of continua.

5. Topological groups: Quotient groups, connected groups.

5. Disconnectedness: Totally disconnected spaces, zero-dimensional spaces,

strongly zero-dimensional spaces.

6. Dimension theory: Dimensions dim, ind, Ind, basic inequalities,

sum theorem for dim, dimension of metric case and of R^n.

Entry requirements - Czech
Last update: doc. RNDr. Petr Holický, CSc. (10.05.2018)

Znalost úvodu do teorie topologických prostorů v rozsahu přednášky Topologie 1.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html