|
|
|
||
Non-obligatory course for the first year of study. The aim of this lecture is to provide several results about metric
spaces that are deeper than in the basic course of mathematical analysis
and to define some notions from topology.
Last update: Pyrih Pavel, doc. RNDr., CSc. (04.05.2018)
|
|
||
The exam is oral and its range depends on the lecture. Last update: Cúth Marek, doc. Mgr., Ph.D. (01.02.2022)
|
|
||
Literature will be specified during the first lecture. Last update: Vejnar Benjamin, doc. Mgr., Ph.D. (29.10.2019)
|
|
||
Studenti si dělají zápisky z přednášek, kde lektor vykládá látku Last update: Cúth Marek, doc. Mgr., Ph.D. (01.02.2022)
|
|
||
1. Metric, metric spaces, continuous and uniformly continuous mappings, homeomorphism, isometry. Open and closed sets, interion, closure, boundary. Subspace, sum and product of metric spaces. 2. Totally bounded and separable metric spaces.
3. Complete metric spaces, completion, Cantor theorem, Baire theorem.
4. Compact metric spaces, Cantors discontinuum, Hilbert cube.
5. Connected metric spaces.
6. Hausdorff metric. Last update: Pyrih Pavel, doc. RNDr., CSc. (04.05.2018)
|