SubjectsSubjects(version: 898)
Course, academic year 2021/2022
Mathematical Analysis 2 - NMMA102
Title: Matematická analýza 2
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: summer
E-Credits: 10
Hours per week, examination: summer s.:4/4 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: prof. RNDr. Jiří Spurný, Ph.D., DSc.
Class: M Bc. MMIB
M Bc. MMIB > Povinné
M Bc. MMIB > 1. ročník
M Bc. MMIT > Povinné
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 1. ročník
Classification: Mathematics > Real and Complex Analysis
Co-requisite : NMMA101
Incompatibility : NMAA002
Interchangeability : NMAA002
Is interchangeable with: NMAA002
In complex pre-requisite: NMAG204, NMAG211, NMAG212, NMFM204, NMFM205, NMMA201, NMMA202, NMMA203, NMMA204, NMMA205, NMNM201, NMSA336
Is complex co-requisite for: NMSA211
Annotation -
Last update: G_M (16.05.2012)
The second part of a four-semester course in mathematical analysis for bachelor's programs General Mathematics and Information Security.
Course completion requirements -
Last update: prof. RNDr. Stanislav Hencl, Ph.D. (09.02.2021)


To pass the seminar you need to successfully write two tests. If you fail a test but you attend the seminars, then you may pass a repair test instead.


Final exam

The exam consists of a written part and an oral part. The details are available at the web page of the lecturer

Literature -
Last update: doc. RNDr. Miroslav Zelený, Ph.D. (19.02.2020)

Lecture notes.

V. Jarník: Diferenciální počet I, Academia 1974.

V. Jarník: Integrální počet I a II, Academia 1984.

B. P. Děmidovič: Sbírka úloh a cvičení z matematické analýzy, Fragment 2003

L. Zajíček: Vybrané úlohy z matematické analýzy pro 1. a 2. ročník, Matfyzpress 2006


J. Lukeš a kol.: Problémy z matematické analýzy (skriptum), MFF UK 1982

Teaching methods - Czech
Last update: prof. RNDr. Stanislav Hencl, Ph.D. (12.02.2021)

Přednáška probíha přes Moodle - viz​

Cvičení individuálně (podle jednotlivých cvičících) většinou přes Zoom.

Syllabus -
Last update: doc. RNDr. Miroslav Zelený, Ph.D. (19.02.2020)

(a) Convergence, divergence, necessary condition of convergence, harmonic series.

(b) Criteria of convergence.

(c) Riemann theorem.

(d) Cauchy product, Mertens theorem.

(e) Complex series.


(a) Basic properties of antiderivatives, substitution theorem, Darboux property of derivative, integration by parts.

(b) Integration of rational functions.

(c) Riemann integral.

(d) Newton integral.

(e) Convergence of Newton integral.

(f) Applications of integral.

Ordinary differential equations

(a) Differential equations with separated variables.

(b) Linear differential equations of the first order.

(c) Lineární differential equations of n-th order with constant coefficients.

(d) Systems of differential equations: Peano theorem, Picard theorem.

(e) Systems of linear differential equations.

Charles University | Information system of Charles University |