SubjectsSubjects(version: 970)
Course, academic year 2024/2025
   Login via CAS
Numerical Forecasting Methods - NMET508
Title: Numerické předpovědní metody
Guaranteed by: Department of Atmospheric Physics (32-KFA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022 to 2024
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: Mgr. Vladimír Fuka, Ph.D.
Teacher(s): Mgr. Vladimír Fuka, Ph.D.
Class: DS, meteorologie a klimatologie
Classification: Physics > Meteorology and Climatology
Annotation -
Initial and boundary value problem for non-linear partial differential equations of atmospheric dynamics and numerical methods of their solution (methods based on difference approach, finite volumes or Galerkin approximation).
Last update: Mikšovský Jiří, doc. Mgr., Ph.D. (18.05.2025)
Aim of the course -

Basic knowledge for activities in the field of the numerical weather prediction.

Last update: BRECHLER/MFF.CUNI.CZ (25.04.2008)
Course completion requirements - Czech

Ústní zkouška v rámci témat daných sylabem.

Last update: Mikšovský Jiří, doc. Mgr., Ph.D. (18.05.2025)
Literature -

[1] NUMERICAL METHODS USED IN ATMOSPHERIC MODELS, VOLUME I.

By F. Mesinger and A. Arakawa (eds.) GLOBAL ATMOSPHERIC RESEARCH PROGRAMME

(GARP), WMO-ICSU Joint Organization Committee, GARP PUBLICATION SERIES No. 17, August 1976.

[2] NUMERICAL METHODS USED IN ATMOSPHERIC MODELS, VOLUME II.

GLOBAL ATMOSPHERIC RESEARCH PROGRAMME (GARP), WMO-ICSU

GARP PUBLICATION SERIES No. 17, August 1979.

[3] Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer,1997.

Last update: BRECHLER/MFF.CUNI.CZ (30.04.2008)
Teaching methods -

Lectures

Last update: BRECHLER/MFF.CUNI.CZ (25.04.2008)
Requirements to the exam -

Examination (see sylabus).

Last update: BRECHLER/MFF.CUNI.CZ (25.04.2008)
Syllabus -

1. Types of PDE's, initial and boundary conditions, discretization.

2. Basic numerical methods (finite difference, finite volume, Gelerkin approximation).

3. Spatial and temporal numerical schemes and their attributes.

Last update: T_KMOP (29.04.2004)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html