SubjectsSubjects(version: 875)
Course, academic year 2020/2021
  
Atmospheric Dynamics - NMET074
Title: Dynamika atmosféry
Guaranteed by: Department of Atmospheric Physics (32-KFA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:3/2 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Note: enabled for web enrollment
Guarantor: doc. RNDr. Tomáš Halenka, CSc.
RNDr. Aleš Raidl, Ph.D.
Mgr. Peter Huszár, Ph.D.
Incompatibility : NMET023
Interchangeability : NMET023
Annotation -
Last update: T_KMOP (25.04.2008)
Introduction to atmospheric thermodynamics and dynamic meteorology
Aim of the course -
Last update: doc. RNDr. Tomáš Halenka, CSc. (20.05.2020)

The main purpose of the course is to provide the fundaments of atmospheric thermodynamics and dynamic principles of the atmosphere. The course enables students to understand the physics applied on the atmosphere, especially in termodynamice, statics of the atmosphere and dynamical behavior of atmospheric flow. In the seminars, the application of theoretical fundaments in simplified problems is shown and tested.

Course completion requirements - Czech
Last update: doc. RNDr. Tomáš Halenka, CSc. (20.05.2020)

Učivo v rozsahu přednášené látky plus eventuálních stanovených částí doporučené literatury, ústní formou. Zápočet student získá za aktivní účast na přednáškách a aktivní práci na cvičeních s vypracováním zadaných problémů či příkladů v rámci domácí přípravy.

Literature -
Last update: doc. RNDr. Tomáš Halenka, CSc. (20.05.2020)

Holton J.R.: An Introduction to Dynamic Meteorology, Elsevier, Academic Press, 2004, 4 vyd., 535 pp.

Dutton J.A.: Dynamics of Atmospheric Motion, Dover Publications, 1986, 617 pp.

Zdunkowski W., Bott A.: Dynamics of the Atmosphere, A Course in Theoretical Meteorology, Cambridge University Press, 2003, 719 ppr.

Bohren C.F., Albrecht B.A.: Atmospheric Thermodynamics, Oxford University Press, 1998, 402 pp.

Martin J. E. (2006): Mid-Latitude Atmospheric Dynamics - A First Course, Wiley, 324 str.

Haltiner G. J., Martin F. L. (1957): Dynamical and Physical Meteorology, McGraw-Hill, 470 str.

Cushman-Roisin B. (1994): Introduction to Geophysical Fluid Dynamics, Prentice Hall, 320 str.

Ambaum M. H. P. (2010): Thermal Physics of the Atmosphere, Wiley-Blackwell, 239 str.

Curry, Webster: Thermodynamics of Atmospheres & Oceans (Academic Press, London, 1999)

Bluestein, H.: Synoptic-Dynamic Meteorology in Midlatitudes, I. a II., , Oxford University Press (1992)

Teaching methods -
Last update: doc. RNDr. Tomáš Halenka, CSc. (20.05.2020)

Lectures and seminars, live attendance.

Requirements to the exam -
Last update: doc. RNDr. Tomáš Halenka, CSc. (20.05.2020)

Exam: Knowledge according to syllabus.

Type of exam: oral

Credit requirements: active participation on lectures and active involvement in seminars with successful completing of prescribed tasks

Credit attempt can be repeated.

Syllabus -
Last update: doc. RNDr. Tomáš Halenka, CSc. (20.05.2020)

1. Thermodynamic system in atmosphere and ocean: composition and structure of atmosphere and ocean, dry and moist air; equation of state and state variables, ideal gas, kinetic theory of the ideal gas; equation of state for the atmosphere, gas-constant, virtual temperature; equation of state for ocean; vertical structure of the atmosphere and ocean, vertical gradient of state variables

2. Main laws of thermodynamics: 0th, Ist and IInd law of thermodynamics, aplication in the atmosphere; equilibrium state in thermodynamics; dry-adiabatic processes in the atmosphere; further consequences and application in atmospheric processes

3. Thermodynamics of moist air and cloud systems: moist characteristics of the air; saturation, phase transitions; Clausius-Clapeyron equation; pseudo-adiabatic process; saturation water vapor pressure above ice, above curved surface, above solution (Raoult law); further consequences and applications in atmospheric processes (water cloud, ice cloud, …)

4. Hydrostatic equilibrium, approximation of the Earth atmosphere: gravitational force, force of Earth's gravity, geopotential; force of pressure gradient, equation of hydrostatic balance, p-system; integration of the hydrostatic equation, barometric formula, hypsometric formula; Earth's atmosphere approximation, standard atmosphere

5. Static stability of the atmosphere and ocean: potential temperature, vertical temperature gradient (lapse rate) and vertical gradient of potential temperature; stratification and vertical stability of the atmosphere, parcel method, gravity (buoyancy) waves in the atmosphere, Brunt-Vaisala frequency; convection, convective available potential energy (CAPE); thermodynamic diagrams; height of convective clouds layer method, entrainment method; stratification and vertical stability of the ocean

6. Atmosphere motion description at rotating Earth: reference frames (rectangular Cartesian and curvilinear coordinates, absolute and relative reference frame, natural coordinates, vertical coordinates); force of horizontal pressure gradient, Coriolis force; divergence, vorticity, continuity equation; streamline, trajectory, Blaton's equation; Helmholtz theorem, streamfunction, velocity potential

7. The momentum equation in the atmosphere: in Cartesian coordinates; in geographic coordinates; in natural coordinates; scale analysis of individual contributions; generalized vertical coordinate, p-system, sigma-system, theta-system; equation of motion, continuity equation and hydrostatic balance equation in the individual systems of vertical coordinate

8. Types of flow: basic classification (cyclonic vs. anticyclonic, baric vs. antibaric, Rossby number); geostrophic flow; gradient flow; cyclostrofic flow; inercial flow; Eulerian flow; ageostrophic wind components; Lamb-Gromeka form of the momentum equation, pseudo-geostrophic wind

9. Vertical structure of flow and thermobaric field: boundary layer flow; wind shear, thermal wind; pressure systems of mid-latitudes, ridge of high pressure, trough of low pressure, anticyclone, cyclone; slant of pressure systems, slope of isothermic and isobaric surfaces; barotropic, baroclinic instability; cyclogenesis, anticyclogenesis; equation of pressure tendency; equation of relative topography tendency

10. Atmospheric fronts: concept and characteristics of atmospheric front; frontal vector, kinematic and dynamic condition of frontal zone; frontogenesis, frontolysis; pressure, thermal and flow field close to the frontal zone; selected types of fronts, Margules formula for slope of the front

11. Divergence, vorticity and circulation: integral definition of divergence; nondivergent flow, divergence of selected flow types; integral definition of vorticity, absolute and relative vorticity; vorticity of selected flow types; cirkulation of flow velocity vector; cirkulation theorems of absolute and relative circulation; potential vorticity

12. Temporal changes in the atmosphere: time-tendency of meteorological parameters; vorticity equation and its approximations; vorticity equation solution, Rossby waves; divergence theorem

13. Flow and thermobaric field of synoptic scale in the atmosphere: balance equation; quasi-geostrophic concept, flow description in the beta-plane; vertical velocity in the atmosphere, (kinematic, adiabatic methods, Richardson's equation); omega-equation; Q-vector

14. Full description of atmospheric dynamics and thermodynamics: closed system of equations for description of the atmosphere; application in numerical weather prediction and climate modelling; implications for general circulation of the atmosphere; tropical cirkulation, meso-synoptic cirkulation, tropical cyclone; circulation in stratosphere

Entry requirements
Last update: T_KMOP (25.04.2008)

Course of the Hydrodynamics is recommended.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html