SubjectsSubjects(version: 875)
Course, academic year 2020/2021
Boundary Layer Physics - NMET002
Title: Fyzika mezní vrstvy
Guaranteed by: Department of Atmospheric Physics (32-KFA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: winter
E-Credits: 5
Hours per week, examination: winter s.:3/1 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Guarantor: doc. RNDr. Petr Pišoft, Ph.D.
doc. RNDr. Josef Brechler, CSc.
Mgr. Vladimír Fuka, Ph.D.
Classification: Physics > Meteorology and Climatology
Files Comments Added by
download Ekman-odvození.pdf The derivation of the Ekman spiral solution Mgr. Vladimír Fuka, Ph.D.
Annotation -
Last update: BRECHLER/MFF.CUNI.CZ (25.04.2008)
Physical processes in the lowermost layer of the Earth's atmosphere affected with the physical properties of this surface. Knowledge gained from lecture on dynamic meteorology is supposed.
Aim of the course -
Last update: BRECHLER/MFF.CUNI.CZ (25.04.2008)

Student gains basic knowledge about planetara boundary layer processes. Thay can be used in wide spectrum of applications (i.a. air-pllution problems or air-flow modelling, for example).

Course completion requirements - Czech
Last update: doc. RNDr. Petr Pišoft, Ph.D. (24.04.2020)

Zkouška skládající se z písemné a ústní části. Úspěšná písemná část je podmínkou pro ústní část. Je pravděpodobné, že se značná část zkoušek či zápočtů může konat distanční formou. Závisí to na vývoji aktuální situace a o jakékoli změně budete včas informováni.

Literature -
Last update: BRECHLER/MFF.CUNI.CZ (25.04.2008)

Stull, R.B.: An Introduction to Boundary Layer Meteorology. Kluwer A.P., 2003

Teaching methods -
Last update: BRECHLER/MFF.CUNI.CZ (25.04.2008)


Requirements to the exam -
Last update: Mgr. Vladimír Fuka, Ph.D. (07.06.2019)

Topics according to the syllabus.

Syllabus -
Last update: BRECHLER/MFF.CUNI.CZ (25.04.2008)

1. Specification of the atmospheric Planetary Boundary Layer (PBL) concept. Theory of viscous flow, Navier-Stokes equations, dynamics similarity criteria.

2. Turbulence, mechanical and thermal sources of turbulence, equations of turbulent flow. Reynold's stresses, closure problem, Prandtl's theory of the mixing length, coefficients of turbulent exchange of momentum, heat and passive scalar. Isotopic and anisotropic turbulence, intensity of turbulence, dynamic (friction) velocity.

3. Theory of the constant flux layer, theory of the spiral layer. Laminar (viscous) sublayer, vertical velocity profiles within the constant flux layer, Taylor (Ekman) spiral and its generalization for real atmosphere.

4. Heat and moisture diffusion in the PBL, courses of temperature and moisture parameters within the PBL, convection, convective and diffusive fluxes, conditions for evaporation within the PBL, radiative processes. Transformation of energy within the PBL, kinetic energy of turbulent flow, Richardson number, Monin-Obukhov length, non-dimensional profiles and the universal function.

5. Basic approaches of turbulence parametrization in the equarions of motion, models of turbulence, DNS, LES, ILES. Function of the wall.

Entry requirements - Czech
Last update: Mgr. Jiří Mikšovský, Ph.D. (12.02.2019)

Znalosti dynamiky tekutin na úrovni předmětu NMET034 Hydrodynamika

Charles University | Information system of Charles University |