SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Computational Aspects of Optimisation - NMEK436
Title: Výpočetní aspekty optimalizace
Guaranteed by: Department of Probability and Mathematical Statistics (32-KPMS)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022
Semester: summer
E-Credits: 5
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English, Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Martin Branda, Ph.D.
Teacher(s): doc. RNDr. Martin Branda, Ph.D.
Ing. Vít Procházka, Ph.D.
Class: M Mgr. PMSE
M Mgr. PMSE > Povinně volitelné
Classification: Mathematics > Math. Econ. and Econometrics, Optimization
Annotation -
Computational approaches to optimization problems. Algorithms for linear, nonlinear, integer and stochastic programming problems. Branch and bound, cutting plane method. Lagrange duality, interior-point method, barrier and penalty functions. Benders decomposition. Introduction to computational complexity. Optimization problems with a special structure. Software tools for optimization.
Last update: T_KPMS (04.05.2015)
Aim of the course -

Modern approaches to optimization are introduced. Real-life applications leading to linear, nonlinear, integer and stochastic programming problems are discussed. A special attention is paid to software tools (GAMS, Matlab etc.).

Last update: T_KPMS (04.05.2015)
Course completion requirements -

The exercise class credit is necessary to sign up for the exam.

Requirements for exercise class credit: The credit for the exercise class will be awarded to the student who hands in a satisfactory solution to each of five assignments (4 standard and one final) by the prescribed deadline.

The nature of these requirements precludes any possibility of additional attempts to obtain the exercise class credit.

Last update: Branda Martin, doc. RNDr., Ph.D. (16.01.2024)
Literature -

Bazaraa, M.S., Sherali, H.D., Shetty, C.M. (2006): Nonlinear programming: theory and algorithms. Wiley, Singapore.

Boyd, S., Vandenberghe, L. (2004): Convex Optimization, Cambridge University Press, Cambridge.

Charamza, P. et. al. (1993): Modelling system GAMS, MFF UK, (in Czech).

Kopa, M. et al. (2008): On Selected Software for Stochastic Programming, Matfyzpress, Prague.

Nocedal, J., Wright, S.J. (2006): Numerical optimization. Springer, New York.

Last update: Branda Martin, doc. RNDr., Ph.D. (06.01.2021)
Teaching methods -

Lecture + exercises.

Last update: T_KPMS (04.05.2015)
Requirements to the exam -

The exam consists of two questions focused on the topics discussed during the lectures. The students must prove that they understand to the methods and algorithms and are able to apply them to examples.

Last update: Zichová Jitka, RNDr., Dr. (05.03.2018)
Syllabus -

1. Dual simplex algorithm for LP. Wolfe algorithm for quadratic programming

2. Introduction to computational complexity

3. Integer linear programming - basic properties, branch-and-bound, cutting planes and Gomory cuts, vehicle routing problem, scheduling, lot-sizing, sparse optimization

4. Lagrange duality in nonlinear programming

5. Algorithms for nonlinear programming - quasi-Newton method, barier and penalty functions, interior point methods, SQP, alg. based on duality

6. Benders decomposition, L-shaped alg.

7. Minimax problems

8. Optimization problems with a special structure - semi-infinite, semi-definite and geometric prog., SOCP, DC, MPEC

9. Dynamic programming

Last update: T_KPMS (04.05.2015)
Entry requirements -

This course assumes knowledge of:

  • Linear programming (structure of the set of feasible solutions - extreme directions and rays, simplex algorithm, duality and its interpretation)
  • Integer programming (branch & bound)
  • Nonlinear programming (Karush-Kuhn-Tucker optimality conditions, constraint qualification conditions)
  • Convexity of sets and functions

These topics are covered by Introduction to optimization (NMFM204), and Optimization theory (NMSA403).

Last update: Zichová Jitka, RNDr., Dr. (01.05.2021)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html