|
|
|
||
Continuation of the course General Topology 1. It is also necessary for the study branch Mathematical Structures. It provides an information about more advaced parts of the discipline.
Last update: T_KMA (15.05.2003)
|
|
||
R. Engelking, General Topology, PWN Warszawa 1977 J. L. Kelley, General Topology, D. Van Nostrand, New York 1957 (ruský překlad Obščaja Topologija, Nauka, Moskva 1968) E. Čech, Topological Spaces, Academia, Praha 1966 Last update: G_I (28.05.2004)
|
|
||
1. Cech-complete spaces: Definition, Frolik's characterization, Baire theorem. 2. Paracompact spaces: Stone theorem, equivalent descriptions, metrization theorems: Urysohn, Bing-Nagata-Smirnov, Bing. 3: Connectedness and local conectedness: components, quasi-components, continua, decomposability and indecomposability. 4.Topological groups: Quotient groups, connected groups. 5. Disconnectedness: Totally disconnected spaces, zero-dimensional spaces, strongly zero-dimensional spaces. 6. Dimension theory: Dimensions dim, ind, Ind, basic inequalities, sum theorem for dim, compact metric case, Katetov-Morita theorem, dimension of R^n. Last update: G_I (28.05.2004)
|