|
|
|
||
1. Diophantine approximations. 2. Geometry of numbers.
3. Congruences and residues. 4. Prime numbers. 5. Integer
partitions. 6. Diophantine equations.
Last update: T_KAM (07.05.2001)
|
|
||
Students learn fundamentals of elementary number theory and master its basic techniques. Last update: T_KAM (25.04.2008)
|
|
||
Oral exam, in person or in distant mode. Last update: Klazar Martin, doc. RNDr., Dr. (22.09.2020)
|
|
||
G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers
lecture notes http://kam.mff.cuni.cz/~klazar/ln_utc.pdf Last update: Klazar Martin, doc. RNDr., Dr. (12.10.2017)
|
|
||
Student gets at the exam one questio. Exam is oral but student can prepare for cca 45 minutes some notes which she or he then explains to the examinator. This fully determines his/her grade. Exam questions: 1) - 6) according to the sylabus Last update: Klazar Martin, doc. RNDr., Dr. (11.06.2019)
|
|
||
1. Diophantine approximations (approximating real numbers by fractions). 2. Geometry of numbers (lattice points, Minkowski's theorem on convex body). 3. Congruences and residues (quadratic residues). 4. Prime numbers (estimates of Chebyshev and Mertens). 5. Integer partitions (Euler's pentagonal identity). 6. Diophantine equations (Pell equation, FLT for n=4 and for polynomials). Last update: T_KAM (20.04.2007)
|