SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Seminar on Forcing - NMAG576
Title: Seminář z forsingu
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:0/2, C [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Note: you can enroll for the course repeatedly
Guarantor: RNDr. David Chodounský, Ph.D.
Teacher(s): RNDr. David Chodounský, Ph.D.
Class: DS, algebra, teorie čísel a matematická logika
Mat. logika a teorie množin
M Mgr. MSTR
M Mgr. MSTR > Volitelné
Classification: Mathematics > Mathematics, Algebra, Differential Equations, Potential Theory, Didactics of Mathematics, Discrete Mathematics, Math. Econ. and Econometrics, External Subjects, Financial and Insurance Math., Functional Analysis, Geometry, General Subjects, , Real and Complex Analysis, Mathematics General, Mathematical Modeling in Physics, Numerical Analysis, Optimization, Probability and Statistics, Topology and Category
Incompatibility : NLTM004
Interchangeability : NLTM004
Annotation -
Seminar extending a lecture LTM003. It is focused on more advanced topics of set theory: infinite combinatorics, cardinal characteristics concerning real line, partial ordering and Boolean algebras, generic extensions of models of set theory, large cardinals.
Last update: T_KA (28.04.2016)
Aim of the course - Czech

Sledovat vývoj oboru, referovat články z pokročilé teorie množin

Last update: T_KA (28.04.2016)
Course completion requirements - Czech

Podminkou pro udeleni zapoctu je pravidelna aktivni ucast na seminari v prubehu semestru a minimalne jedna prezentace refreatu na zadane tema v ramci seminare.

Zapocet neni mozne opakovat.

Last update: Chodounský David, RNDr., Ph.D. (09.10.2017)
Syllabus -

Seminar extending a lecture LTM003. It is focused on more advanced

topics of set theory: infinite combinatorics, cardinal characteristics

concerning real line, partial ordering and Boolean algebras, generic

extensions of models of set theory, large cardinals.

Last update: T_KA (28.04.2016)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html