SubjectsSubjects(version: 849)
Course, academic year 2019/2020
   Login via CAS
Seminar on Forcing - NMAG576
Title in English: Seminář z forsingu
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2019
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:0/2 C [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Note: you can enroll for the course repeatedly
Guarantor: RNDr. David Chodounský, Ph.D.
Class: DS, algebra, teorie čísel a matematická logika
Mat. logika a teorie množin
M Mgr. MSTR
M Mgr. MSTR > Volitelné
Classification: Mathematics > Mathematics, Algebra, Differential Equations, Potential Theory, Didactics of Mathematics, Discrete Mathematics, Math. Econ. and Econometrics, External Subjects, Financial and Insurance Math., Functional Analysis, Geometry, General Subjects, , Real and Complex Analysis, Mathematics General, Mathematical Modeling in Physics, Numerical Analysis, Optimization, Probability and Statistics, Topology and Category
Incompatibility : NLTM004
Interchangeability : NLTM004
Annotation -
Last update: T_KA (28.04.2016)
Seminar extending a lecture LTM003. It is focused on more advanced topics of set theory: infinite combinatorics, cardinal characteristics concerning real line, partial ordering and Boolean algebras, generic extensions of models of set theory, large cardinals.
Aim of the course - Czech
Last update: T_KA (28.04.2016)

Sledovat vývoj oboru, referovat články z pokročilé teorie množin

Course completion requirements - Czech
Last update: RNDr. David Chodounský, Ph.D. (09.10.2017)

Podminkou pro udeleni zapoctu je pravidelna aktivni ucast na seminari v prubehu semestru a minimalne jedna prezentace refreatu na zadane tema v ramci seminare.

Zapocet neni mozne opakovat.

Syllabus -
Last update: T_KA (28.04.2016)

Seminar extending a lecture LTM003. It is focused on more advanced

topics of set theory: infinite combinatorics, cardinal characteristics

concerning real line, partial ordering and Boolean algebras, generic

extensions of models of set theory, large cardinals.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html