|
|
|
||
The course gives a brief overview of some classical results on modular and integral representations of finite groups.
Last update: T_KA (14.05.2013)
|
|
||
Zápočet bude udělen buď za průběžné řešení úloh ze cvičení nebo za vyřešení sady domácích úkolů, které zadám ke konci semestru. Last update: Příhoda Pavel, doc. Mgr., Ph.D. (13.10.2023)
|
|
||
1. Charles W. Curtis, Irving Reiner: Representation theory of finite groups and associative algebras, John Wiley & Sons, New York, 1988. 2. Walter Feit: The representation theory of finite groups, North-Holland mathematical library, Amsterdam, 1982 3. Steven H. Weintraub: Representation Theory of Finite Groups: Algebra and Arithmetic (Graduate Studies in Mathematics, Vol. 59), AMS, Providence 2003. Last update: T_KA (14.05.2013)
|
|
||
Zkouška bude ústní - dvě otázky z probrané látky. K úspěšnému složení zkoušky stačí prokázat základní přehled u každé otázky. Last update: Příhoda Pavel, doc. Mgr., Ph.D. (13.10.2023)
|
|
||
The course is a free continuation of Group Representations 1. It can also cover topics from the previous course.
1. Discrete Fourier transform on finite groups and its applications.
2. Induced representations, theorems of Artin and Brauer.
3. Introduction to modular representation of finite groups. Brauer characters, finite representation type.
4. (probably only some of these topics) Projective representations, lattices, vertices and sources. Last update: Příhoda Pavel, doc. Mgr., Ph.D. (09.09.2024)
|