SubjectsSubjects(version: 901)
Course, academic year 2022/2023
  
MSTR Elective 1 - NMAG498
Title: Výběrová přednáška z MSTR 1
Guaranteed by: Mathematical Institute of Charles University (32-MUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2022
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
Virtual mobility / capacity: no
State of the course: not taught
Language: English, Czech
Teaching methods: full-time
Additional information: https://diliberti.github.io/Teaching/Teaching%20Charles/SMC/2021/SMC21.html
Note: you can enroll for the course repeatedly
Guarantor: Andrea Gagna, Ph.D.
Class: M Mgr. MSTR
M Mgr. MSTR > Volitelné
Classification: Mathematics > Algebra
Annotation -
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (03.06.2021)
Non-repeated universal elective course. 2021/22: Sheaves, Manifolds, Cohomology.
Course completion requirements - Czech
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (10.06.2019)

Předmět je zakončen ústní zkouškou.

Literature -
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (03.06.2021)

T. Wedhorn, Manifolds, Sheaves, and Cohomology (https://www.springer.com/gp/book/9783658106324)

Requirements to the exam -
Last update: doc. RNDr. Jan Šťovíček, Ph.D. (11.10.2017)

The course is completed with an oral exam. The requirements for the exam correspond to what is presented in lectures.

Syllabus -
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (03.06.2021)

L1 Introduction and Background in Category theory.

L2 Sheaves. Chap. 3

L3 Sheaves. Chap. 3

L4 Manifolds as ringed spaces. Chap 4.

L5 Manifolds as ringed spaces. Chap 4.

L6 Bundles and O-modules. Chap 8. (selected sections).

L7 Bundles and O-modules. Chap 8. (selected sections).

L8 Cohomology of Sheaves. Chap. 10.

L9 Cohomology of Sheaves. Chap. 10.

L10 Cohomology of Sheaves. Chap. 10.

L11 Cohomology of Sheaves. Chap. 10.

L12 Cohomology of Constant Sheaves. Chap 11.

L13 Cohomology of Constant Sheaves. Chap 11.

T. Wedhorn, Manifolds, Sheaves, and Cohomology

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html