|
|
|
||
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (30.05.2023)
|
|
||
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (10.06.2019)
Předmět je zakončen ústní zkouškou. |
|
||
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (03.06.2021)
T. Wedhorn, Manifolds, Sheaves, and Cohomology (https://www.springer.com/gp/book/9783658106324) |
|
||
Last update: doc. RNDr. Jan Šťovíček, Ph.D. (11.10.2017)
The course is completed with an oral exam. The requirements for the exam correspond to what is presented in lectures. |
|
||
Last update: doc. Mgr. et Mgr. Jan Žemlička, Ph.D. (30.05.2023)
ZS 2024/25: Obecné teorie logických systémů
1. Basic syntactical notions. Introduction of important examples (classical logic, intuitionistic logic, Lukasiewicz logic, Gödel-Dummett logic, BCI, and BCK). Completeness w.r.t. the general matrix semantics. Weakly implicative logics and completeness w.r.t. reduced models. Finitary logics and completeness w.r.t. relatively subdirectly irreducible matrices. Characterizations of completeness properties w.r.t. arbitrary classes of models.
2. Generalized disjunctions and proof by cases properties. Semilinear logics and their characterizations. Examples in the family of substructural logics.
3. Leibniz operator on arbitrary logics. Leibniz hierarchy: protoalgebraic, equivalential and (weakly) algebraizable logics. Regularity and finiteness conditions. Alternative characterizations of the classes in the hierarchy. Bridge theorems connecting algebraic and metalogical properties (e.g. deduction theorems, Craig interpolation, Beth definability). |