SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
MSTR Elective Seminar - NMAG475
Title: Výběrový seminář z MSTR
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: both
E-Credits: 2
Hours per week, examination: 0/2, C [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English, Czech
Teaching methods: full-time
Note: you can enroll for the course repeatedly
you can enroll for the course in winter and in summer semester
Guarantor: RNDr. Michal Hrbek, Ph.D.
Teacher(s): Mgr. Daria Dunina
Mgr. Maroš Grego
RNDr. Michal Hrbek, Ph.D.
Class: M Mgr. MSTR > Volitelné
Classification: Mathematics > Algebra
Interchangeability : NALG050
Annotation -
Universal elective seminar in WS and SS of 2024/25: Derived categories and tilting theory. Advanced seminar on tilting theory. Basics on derived and triangulated categories and t-structures, generalized tilting and cotilting objects, hearts of (co)tilting t-structures, derived equivalences, topological endomorphism rings. in SS of 2024/25 Seminar on ∞-categories We will introduce the Joyal model of quasicategories (aka weak Kan complexes) and focus on building the intuition about them and understanding the language that allows reading contemporary research.
Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (16.01.2025)
Course completion requirements -

Active participance.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (28.10.2019)
Literature -
Derived categories and tilting theory:

Neeman, Amnon. Triangulated categories. No. 148. Princeton University Pres

Angeleri Hügel, Lidia. Silting objects. Bulletin of the London Mathematical Society 51.4 (2019): 658-690.

Leonid Positselski, Jan Šťovíček. The tilting-cotilting correspondence. International Mathematics Research Notices 2021.1 (2021): 189-274.

Seminar on ∞-categories:

Markus Land. Introduction to infinity-categories. English. Compact Textb. Math. Cham: Birkhäuser, 2021. isbn: 978-3-030-61523-9; 978-3-030-61524-6. doi: 10.1007/978-3-030-61524-6.

Jacob Lurie. Higher topos theory. English. Vol. 170. Ann. Math. Stud. Princeton, NJ: Princeton University Press, 2009. isbn: 978-0-691-14049-0; 978-0-691-14048-3. doi: 10.1515/9781400830558.

Charles Rezk. Introduction to Quasicategories. 2022. url: https://rezk.web.illinois.edu/quasicats.pdf

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (16.01.2025)
Syllabus -
Derived categories and tilting theory
1. Basics on triangulated categories - derived category of an abelian category, derived functors, t-structures and their hearts

2. Generalized tilting theory of Psaroudakis-Vitória and Nicolás-Saorín-Zvonareva

3. Tilting theorems, derived equivalences

4. Topological interpretation of tilting hearts and equivalences, examples

Seminar on ∞-categories
The seminar will be organised in the form of talks by attendees from the assigned literature, leading to the understanding of the basic toolbox of the theory of ∞-categories.

If the attendees are interested, we may also wander into applications to stable homotopy theory, algebraic K-theory, topological quantum field theory or derived ∞-categories of abelian categories.

Only the knowledge of elementary notions of ordinary category theory is required (functors, limits etc.), although the itroductory algebraic topology course will be very helpful.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (16.01.2025)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html