Basic algebraic number theory - NMAG472
|
|
|
||
Algebraic number theory studies the structure of number fields and forms the basis for most of advanced areas of
number theory. In the course we will develop its main tools that are connected to algebraic integers, prime ideals,
ideal class group, and unit group, and we will richly illustrate them by examples.
Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (17.05.2024)
|
|
||
Daniel A. Marcus, Number Fields, Universitext, 2018.
James A. Milne, Algebraic Number Theory, online.
Serge Lang, Algebraic Number Theory, GTM 110, 1994.
H. Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin 1996.
A. Frőhlich, M. J. Taylor, Algebraic number theory, Cambridge University Press, Cambridge 1991. Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (17.05.2024)
|
|
||
There will be an oral exam with questions corresponding to the material covered in the course. See course website for more information. Last update: Kala Vítězslav, doc. Mgr., Ph.D. (26.02.2025)
|
|
||
Review of basic notions
Algebraic integers
Norm, trace, discriminant
Prime factorization, ramification and splitting
Geometry of numbers, Minkowski bound
Finiteness of class group
Dirichlet unit theorem Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (17.05.2024)
|