SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Universal Algebra 2 - NMAG450
Title: Universální algebra 2
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:2/1, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English, Czech
Teaching methods: full-time
Additional information: https://www.karlin.mff.cuni.cz/~kompatscher/teaching/UA2.html
Guarantor: Dmitrii Zhuk, Ph.D.
Teacher(s): Maximilian Hadek, B.Sc.
Michael Kompatscher, Ph.D.
Class: M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Classification: Mathematics > Algebra
Incompatibility : NALG104
Interchangeability : NALG104
Is interchangeable with: NALG104
Annotation -
Basic course in universal algebra.
Last update: T_KA (14.05.2013)
Course completion requirements -

It is necessary to score at least 60% on 3 homework assignments to obtain "Zápočet" and be admitted to the exam.

Last update: Kompatscher Michael, Ph.D. (14.02.2022)
Literature -

There will be lecture notes for the course. Several (but not all) of the topics are also discussed in the book

  • C. Bergman: "Universal Algebra: Fundamentals and Selected Topics",

which can be found in our library.

Various sources for further reading:

  • S. Burris, H. P. Sankappanavar: "A course in universal algebra." Springer-Verlag, 1981.
  • L. Barto, A. Krokhin, R. Willard: "Polymorphisms, and how to use them", Dagstuhl Follow-Ups. Vol. 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
  • L. Barto, M. Kozik: "Absorbing subalgebras, cyclic terms and the constraint satisfaction problem", Logical Methods in Computer Science 8/1:07 (2012), 1-26.
  • J. Jezek: "Universal Algebra"
  • R. McKenzie, G. McNulty, W. Taylor: "Algebras, Lattices, Varieties", vol. 1. Wadsworth and Brooks/Cole, 1987.
  • R. Freese, R. McKenzie: "Commutator theory for congruence modular varieties", LMS Lecture Notes, Vol. 125, Cambridge, 1987.

Last update: Kompatscher Michael, Ph.D. (14.02.2022)
Requirements to the exam -

The final mark is determined by an oral exam.

Last update: Kompatscher Michael, Ph.D. (14.02.2022)
Syllabus -

This course offers an introduction to selected topics in universal algebra that are connected to the research interests of the algebra group. In summer semester 2022 this includes:

  • Term rewriting systems and the Knuth-Bendix algorithm
  • Abelianness and basics of commutator theory
  • Finitely based algebras
  • The study of Maltsev conditions (Taylor terms) and their relevance to CSPs
Last update: Kompatscher Michael, Ph.D. (14.02.2022)
Entry requirements -

Knowledge on level of the course Universal Algebra 1.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (17.05.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html