SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Combinatorics on Words - NMAG444
Title: Kombinatorika na slovech
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023
Semester: winter
E-Credits: 3
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: English, Czech
Teaching methods: full-time
Additional information: https://dl1.cuni.cz/course/view.php?id=9694
Note: course can be enrolled in outside the study plan
Guarantor: doc. Mgr. Štěpán Holub, Ph.D.
Teacher(s): doc. Mgr. Štěpán Holub, Ph.D.
Class: M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Classification: Mathematics > Algebra
Incompatibility : NALG083
Interchangeability : NALG083
Is interchangeable with: NALG083
Annotation -
The course introduces to combinatorial properties of free monoids (semigroups resp.). It deals mainly with the structure of submonoids, with morphisms, and with solutions of equations. Some questions concerning equality sets represent a more advanced part of the lecture. The course is complemented by formalization in the proof assistant Isabelle/HOL.
Last update: Holub Štěpán, doc. Mgr., Ph.D. (24.08.2023)
Course completion requirements - Czech

Předmět je zakončen ústní zkouškou.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (10.06.2019)
Literature -

C. Choffrut and J. Karhumäki, Combinatorics on words, in: Handbook of Formal Languages (G. Rozenberg and A. Salomaa, eds.), vol. I, Springer-Verlag, Berlin Heidelberg 1997, pp. 329-438.

T. Harju and J. Karhumäki, Morphisms, in: Handbook of Formal Languages (G. Rozenberg and A. Salomaa, eds.), vol. I, Springer-Verlag, Berlin Heidelberg 1997, pp. 439-510.

M. Lothaire, Combinatorics on words, Addison-Wesley, Reading Masachusetts, 1983.

M. Lothaire, Algebraic Combinatorics on words, Cambridge University Press, 2002.

J. Berstel and D. Perrin, Theory of Codes, Academic Press, London 1985.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (22.09.2021)
Requirements to the exam -

The student will draw the exam question from a list of covered topics. The content of the question can be further specified if needed. The answer is oral after a written preparation.

Last update: Holub Štěpán, doc. Mgr., Ph.D. (14.02.2018)
Syllabus -

1. Properties of submonoids of free monoids. Code. Rank of subsemigroup. F-semigroups.

2. Morphisms. Equation and its solution. Systems of equations and equivalent subsystems. Compactness Theorem. ( "Ehrenfeucht's conjecture").

3. Test sets. Existence of a finite test set. Equivalence with the Compactness Theorem.

4. Post Correspondence Problem (PCP) and its modofications. Binary equality sets and their structure. Regular equality sets.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (22.09.2021)
Entry requirements -

Basics of general algebra.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (17.05.2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html