SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Algebraic Number Theory - NMAG430
Title: Algebraická teorie čísel
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2024
Semester: winter
E-Credits: 6
Hours per week, examination: winter s.:3/1, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: not taught
Language: Czech, English
Teaching methods: full-time
Additional information: https://sites.google.com/view/pyatsyna/teaching/algebraic-number-theory/202324
Guarantor: Pavlo Yatsyna, Ph.D.
Class: M Mgr. MMIB
M Mgr. MMIB > Povinně volitelné
M Mgr. MSTR
M Mgr. MSTR > Povinně volitelné
Classification: Mathematics > Algebra
Incompatibility : NMAG472
Is incompatible with: NMAG472
Annotation -
Algebraic number theory studies the structure of number fields and forms the basis for most of advanced areas of number theory. In the course we will develop its main tools that are connected to algebraic integers, prime ideals, ideal class group, unit group, and subgroups of the Galois group, including basics of p-adic numbers and applications to Diophantine equations.
Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (07.12.2018)
Course completion requirements

The course requires an oral exam and credit for the exercises. The credit for the exercises "zapocet" will be awarded for successfully solving several sets of homework problems. Zapocet is not needed for taking the exam.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (16.02.2023)
Literature -

James A. Milne, Algebraic Number Theory, online.

Serge Lang, Algebraic Number Theory, GTM 110, 1994.

E.I. Borevič, I.R. Šafarevič: Number Theory, Academic Press 1966.

H. Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin 1996.

A. Frőhlich, M.J. Taylor, Algebraic number theory, Cambridge University Press, Cambridge 1991.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (07.12.2018)
Requirements to the exam

The exam is oral with approx. 60 minutes time for preparation for 1 or 2 questions corresponding to the material covered by the course.

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (16.02.2023)
Syllabus -

Algebraic integers

Dedekind domains

Prime factorization, ramification and splitting

Geometry of numbers, Minkowski bound

Finiteness of class group

Dirichlet unit theorem, regulator

Cyclotomic fields, Diophantine equations

p-adic numbers

Ramification and inertia group, Frobenius element

Last update: Žemlička Jan, doc. Mgr. et Mgr., Ph.D. (07.12.2018)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html