SubjectsSubjects(version: 957)
Course, academic year 2024/2025
   Login via CAS
Introduction to Lie Group Theory - NMAG334
Title: Úvod do teorie Lieových grup
Guaranteed by: Mathematical Institute of Charles University (32-MUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2021
Semester: summer
E-Credits: 5
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech, English
Teaching methods: full-time
Teaching methods: full-time
Additional information: https://kulietheory.wordpress.com/
Guarantor: Dr. Re O'Buachalla, Dr.
Class: M Bc. OM
M Bc. OM > Zaměření MSTR
M Bc. OM > Povinně volitelné
Classification: Mathematics > Algebra, Geometry
Incompatibility : NALG018
Interchangeability : NALG018
Is interchangeable with: NALG018
In complex pre-requisite: NMAG349, NMAG351
Annotation -
A basic course of structure and representation theory of Lie groups and algebras, with emphasis on complex semisimple Lie algebras. A recommended course for specialization Mathematical Structures within General Mathematics.
Last update: T_MUUK (06.05.2015)
Course completion requirements - Czech

Ústní zkouška s přípravou, podrobnější podmínky na stránkách kurzu.

Last update: Šmíd Dalibor, Mgr., Ph.D. (11.06.2021)
Literature -

1) Knapp: Lie Groups: Beyond an Introduction

2) Slovák: Reprezentace polojednoduchých Lieových algeber

3) Hall: Lie Groups, Lie Algebras and Representations: An Elementary Introduction

4) Fulton, Harris: Representation Theory: A First Course

5) Rossmann: Lie Groups: An Introduction Through Linear Groups

6) Humphreys: Introduction to Lie Algebras and Representation Theory

7) Gilmore: Lie Groups, Physics and Geometry

Last update: O'Buachalla Re, Dr., Dr. (16.02.2022)
Requirements to the exam - Czech

Podrobnosti na stránkách kurzu.

Last update: Šmíd Dalibor, Mgr., Ph.D. (11.06.2021)
Syllabus -
  • Lie algebra, homomorphisms of Lie algebra.
  • Left-invariant vector fields on Lie groups, Lie algebra of a Lie group, one-parametric subgroups of a Lie group, exponential map.
  • Correspondence between homomorphisms of Lie groups and homomorphisms of Lie algebras.
  • Basic facts on representations of Lie groups and algberas (restrictions of representations, factor-representation, contragredient representation, sum and tensor product of representations, intertwining maps, isomorphism of representations).
  • Irreducible representations of simple Lie algebras (classification of representations of sl(2,C), Cartan subalgebras, roots, positive roots, simple roots, weights, weight lattice, Weyl chambers, dominant weights, fundamental weights).
  • Classification of irreducible representations of four classical series, construction of fundamental representations, spinor representations.
  • Dynkin diagrams, classification of complex simple Lie algebras.

Course Website: https://kulietheory.wordpress.com/

Last update: O'Buachalla Re, Dr., Dr. (16.02.2022)
Entry requirements -

Linear algebra, multivariate calculus.

Last update: Šmíd Dalibor, Mgr., Ph.D. (22.05.2018)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html