Geometry 2 - NMAG212
|
|
|
||
Introduction to differential forms, Stokes Theorem and differential geometry of surfaces.
Last update: Šmíd Dalibor, Mgr., Ph.D. (13.05.2022)
|
|
||
The exam will be written. The student will receive credit for homework. Last update: Lávička Roman, doc. RNDr., Ph.D. (24.09.2024)
|
|
||
R. Černý, M. Pokorný: Základy matematické analýzy pro studenty fyziky 3, MatfyzPress, 2023. J. Kopáček: Příklady z matematiky pro fyziky III, MatfyzPress, 2002. L. Boček: Příklady z diferenciální geometrie, skripta MFF UK, Praha, 1974. P.M.H. Wilson: Curved Spaces, Cambridge, 2008.
Last update: Lávička Roman, doc. RNDr., Ph.D. (12.12.2024)
|
|
||
Requirements to the exam correspond to the syllabus to the extent to which topics were covered during lectures and tutorials. Last update: Lávička Roman, doc. RNDr., Ph.D. (24.09.2024)
|
|
||
Vector calculus, exterior algebra, differential forms, Stokes, Green and Gauss theorems, Differential geometry of surfaces, Geodesics, Riemann metrics, models of hyperbolic geometry. Last update: Šmíd Dalibor, Mgr., Ph.D. (13.05.2022)
|