SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
Geometry - NMAG204
Title in English: Geometrie
Guaranteed by: Mathematical Institute of Charles University (32-MUUK)
Faculty: Faculty of Mathematics and Physics
Actual: from 2016 to 2018
Semester: summer
E-Credits: 4
Hours per week, examination: summer s.:2/1 C+Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Zbyněk Šír, Ph.D.
Class: M Bc. MMIT > Povinně volitelné
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 2. ročník
Classification: Mathematics > Geometry
Pre-requisite : {One 1st year Analysis course}
Incompatibility : NGEM012
Interchangeability : NGEM012
Is pre-requisite for: NMPG349
Annotation -
Last update: G_M (15.05.2012)
Lecture on Differential geometry for students of General Mathematics. Surfaces in the three dimensional Euclidean space, the first and second fundamental forms, main curvatures of surface, Gauss and mean curvature, geodesics, geodesic curvature.
Aim of the course -
Last update: G_M (24.04.2012)

Teaching of differential geometry of curves and surfaces.

Course completion requirements - Czech
Last update: doc. RNDr. Zbyněk Šír, Ph.D. (14.03.2019)

Podmínkou udělení zápočtu je odevzdání 4 průběžně zadávaných domácích úkolů. Charakter zápočtu neumožňuje jeho opakování. Podmínkou připuštění ke zkoušce je udělený zápočet. Zkouška probíhá písemnou formou a má dvě části, početní a teoretickou.

Literature -
Last update: G_M (24.04.2012)

[1] do Carmo, M., P., Differential geometry of curves and surfaces, Prentice Hall, 1976.

[2] Klingenberg W., A., Course in differential geometry, GTM 51, Springer 1978.

[3] Bures, J., Hrubcik, K., Diferencialni geometrie krivek a ploch, Karolinum, Praha, 1998.

Teaching methods -
Last update: G_M (24.04.2012)

Lecture and exercises.

Requirements to the exam - Czech
Last update: doc. RNDr. Zbyněk Šír, Ph.D. (17.02.2018)

Ke zkοušce je možno přistoupit jen po získání zápočtu. Zkouška probíhá písemnou formou a má dvě části, početní a teoretickou. Je nutno získat předepsaný počet bodů z každé části.

Syllabus -
Last update: G_M (24.04.2012)

A. INTRODUCTION

1. Motivation. The Euclidean space and its properties.

2. Differentiation in R^n. Tangent space, differential of a mapping.

B. CURVES

3. Definition and basic properties. Curvature and torsion. The Frenet frame, Frenet formulae and its applications.

4. Curves in plane and space.

C. SURFACES

5. Definition and basic properties. The first fundamental form.

6. Second fundamental form, Weingarten's mapping.

7. Curves on a surface, principal curvatures, Gauss and mean curvature.

8. Principal and asymptotic directions and curves, isometric surfaces.

9. Intrinsic geometry of a surface, geodetic curves.

10. Introduction to hyperbolic geometry.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html