Linear Algebra 2 - NMAG114
Title: Lineární algebra 2
Guaranteed by: Department of Algebra (32-KA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2023 to 2023
Semester: summer
E-Credits: 10
Hours per week, examination: summer s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Is provided by: NMAG112
Additional information:
Guarantor: doc. RNDr. Jan Šťovíček, Ph.D.
Class: M Bc. FM
M Bc. FM > Povinné
M Bc. FM > 1. ročník
M Bc. MMIB > Povinné
M Bc. MMIB > 1. ročník
M Bc. MMIT > Povinné
M Bc. OM
M Bc. OM > Povinné
M Bc. OM > 1. ročník
Classification: Mathematics > Algebra
Co-requisite : NMAG113
Incompatibility : NMAG102, NMAG112
Interchangeability : NMAG102, NMAG112
Is incompatible with: NMAG112
In complex pre-requisite: NMAG201, NMAG202, NMAG206, NMAG211, NMFM202, NMSA336
Opinion survey results   Examination dates   SS schedule   Noticeboard   
Annotation -
The second introductory lecture in linear algebra for General Mathematics, Financial Mathematics, and Information Security
Last update: Omelka Marek, doc. Ing., Ph.D. (30.05.2023)
Course completion requirements -

See the website of the course.

Last update: Šťovíček Jan, doc. RNDr., Ph.D. (16.02.2024)
Literature -

C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM 2000.

T.S. Blyth, E.F. Robertson, Basic Linear Algebra, Springer Verlag London,2002,

S.H. Friedberg, A.J. Insel, L.E.Spence, Linear Algebra, Third Edition, Prentice-Hall, Inc., 1997

L. Barto, J. Tůma, Lineární algebra a geometrie, elektronická skripta

Last update: Šťovíček Jan, doc. RNDr., Ph.D. (16.02.2024)
Requirements to the exam -

See the website of the course.

Last update: Šťovíček Jan, doc. RNDr., Ph.D. (16.02.2024)
Syllabus -
  • standard and abstract scalar product, orthogonal basis, Gram-Schmidt orthogonalization,
  • orthogonal and unitary mappings and matrices, rotations (especially in 3D), group properties,
  • eigenvalues, eigenvectors, diagonalization, Jordan canonical form,
  • unitary and orthogonal diagonalization, spectral theorems, singular value decomposition,
  • bilinear and quadratic forms, their matrix, orthogonalization, inertia theorem,
  • geometry in R3

Last update: Šťovíček Jan, doc. RNDr., Ph.D. (16.02.2024)