SubjectsSubjects(version: 964)
Course, academic year 2024/2025
   Login via CAS
Mathematics for Physicists III - NMAF063
Title: Matematika pro fyziky III
Guaranteed by: Laboratory of General Physics Education (32-KVOF)
Faculty: Faculty of Mathematics and Physics
Actual: from 2020
Semester: winter
E-Credits: 9
Hours per week, examination: winter s.:4/2, C+Ex [HT]
Capacity: unlimited
Min. number of students: unlimited
4EU+: no
Virtual mobility / capacity: no
State of the course: taught
Language: Czech
Teaching methods: full-time
Additional information: https://www2.karlin.mff.cuni.cz/~pokorny/fyz1e.html
Guarantor: prof. Mgr. Milan Pokorný, Ph.D., DSc.
Teacher(s): doc. RNDr. Dalibor Pražák, Ph.D.
Class: Fyzika
Classification: Physics > Mathematics for Physicists
Interchangeability : NMAF044
Annotation -
This one-semestral course is a continuation of the basic two year course on analysis and linear algebra for physicists.
Last update: T_KMA (13.05.2008)
Aim of the course -

This one-semestral course is a continuation of the basic two year course on analysis and linear algebra for physicists.

Last update: T_KMA (13.05.2008)
Course completion requirements -

Credits for tutorials, including those for written tests and active participation, are a necessary prerequisite in order to take the exam. Credits are given by the tutor. The exam consists of a written part and oral examination.

Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (28.09.2020)
Literature -

P. Čihák a kol.: Matematická analýza pro fyziky (V), Matfyzpress, Praha, 2001, 320 str.

P. Čihák, J. Čerych, J. Kopáček: Příklady z matematiky pro fyziky V, Matfyzpress, Praha, 2002, 306 str.

J. Kopáček a kol.: Příklady z matematiky pro fyziky IV, Matfyzpress, 2003, 159 str.

R. Strichartz: A guide to distribution theory and Fourier transform, 2015, 218 str.

I. M. Gel'fand, G. E. Šilov: Obobščenyje funkcii i dejstvija nad nimi, Moskva, 1958, 439 str.

L. Hormander: The analysis of linear partial differential operators I, Springer 1983,391 str.

R. Černý, M. Pokorný: Matematika pro fyziky V,

  • online material
  • Videozáznamy přednášek
  • Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (28.09.2020)
    Teaching methods -

    lectures and tutorials, starts online, further according the situation

    Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (28.09.2020)
    Requirements to the exam -

    The exam consists of a written part and oral examination. To pass the written part, at least 40% of the points are necessary.

    Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (28.09.2020)
    Syllabus -

    1. Laplace transform of functions

    Definition and basic properties. Inversion theorems, application to intial promblems in ODEs.

    2. Special functions

    Gamma and beta funcions, Bessel functions. Gauss integration, hypergeometrical series.

    3. Theory of distributions

    Distributions, tempered distributions, (Dirac, vp and Pf distributions). Distributional calculus (multiplication by a smooth function, tensor product, convolution, differentiation, linear transformation). Convergence of distributions, distributions with parameter, Fourier and Laplace transform of distributions and its applications: derivative, convolution, tensor product. Convolution equations, fundamental solution. Fourier transform of periodical functions and distributions, Fourier series of periodical distributions.

    4. Applications of theory of distributions

    Laplace-Poisson equation:uniqueness, existence, Liouville theorem. Theorem of three potentials. Dirichlet problem and its solution. Use of conformal mappings to obtain solution in two dimensional domain. Heat equation: fundamental solutions, solutions with data. Heat waves, cooling of the ball. The wave equation: fundamental solutions, solutions with data.

    Last update: T_KMA (13.05.2008)
    Entry requirements -

    Knowledge of differential and integral calculus of one and several real variables, one complex variable.

    Last update: Pokorný Milan, prof. Mgr., Ph.D., DSc. (22.06.2021)
     
    Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html