The course, together with the Methods of Numerical Mathematics I, covers
fundamentals of the numerical mathematics. The course is devoted to
mathematical modelling and numerical solution of the ordinary and partial
differential equations.
Last update: BENESL/MFF.CUNI.CZ (05.05.2008)
Aplikace numerických metod v meteorologii.
Last update: Mikšovský Jiří, doc. Mgr., Ph.D. (13.02.2019)
Aim of the course -
Fundamental methods for ODE and PDE.
Last update: BENESL/MFF.CUNI.CZ (05.05.2008)
Základní metody pro ODR a PDR.
Last update: BENESL/MFF.CUNI.CZ (05.05.2008)
Course completion requirements - Czech
Zkouška - viz sylabus.
Last update: Mikšovský Jiří, doc. Mgr., Ph.D. (13.02.2019)
Literature -
A. Ralston: Základy numerické matematiky, Academia Praha 1973
E. Vitásek: Numerické metody, SNTL Praha 1987
R. J. LeVaque: Finite Difference Methods for Differential Equations
J.H. Ferzinger: Numerical Methods for Engineering Applications, Wiley 1998
A. Quarteroni, A. Valli: Numerical Approximation of Partial Differential Equations, Springer 1997
Last update: BENESL/MFF.CUNI.CZ (05.05.2008)
A. Ralston: Základy numerické matematiky, Academia Praha 1973
E. Vitásek: Numerické metody, SNTL Praha 1987
R. J. LeVeque: Finite Difference Methods for Differential Equations
J.H. Ferziger: Numerical Methods for Engineering Applications, Wiley 1998
A. Quarteroni, A. Valli: Numerical Approximation of Partial Differential Equations, Springer 1997
P. Mote and A. O'Neill: Numerical Modeling of the Global Atmosphere in the Climate System, NATO Science Series, Kluwer 2000
Last update: Mikšovský Jiří, doc. Mgr., Ph.D. (13.02.2019)
Teaching methods -
Lecture, laboratory exercise.
Last update: BENESL/MFF.CUNI.CZ (05.05.2008)
Přednáška, cvičení - samostatné programování modelových příkladů.
Last update: Mikšovský Jiří, doc. Mgr., Ph.D. (13.02.2019)
Classification, Fourier analysis of linear PDE, characteristics, convergence, consistence, stability, FD methods, methods of lines, CFL condition, von Neumann analysis.
Elliptic equations - discretisation, finite differences, five and nine-point scheme, boundary conditions, solving the linear system, accuracy and stability.
Diffusion equation- finite differences, method of lines. Crank-Nicolson method. LOD and ADI method