SubjectsSubjects(version: 845)
Course, academic year 2018/2019
   Login via CAS
Selected Topics on Mathematics for Physicists - NMAF006
Title in English: Vybrané partie z matematiky pro fyziky
Guaranteed by: Department of Mathematical Analysis (32-KMA)
Faculty: Faculty of Mathematics and Physics
Actual: from 2016
Semester: summer
E-Credits: 3
Hours per week, examination: summer s.:2/0 Ex [hours/week]
Capacity: unlimited
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Guarantor: doc. RNDr. Mirko Rokyta, CSc.
Classification: Physics > Mathematics for Physicists
Annotation -
Last update: doc. RNDr. Mirko Rokyta, CSc. (18.02.2013)
An introduction to functional analysis, operator theory and special functions for physicists. It is the sequel to the basic 5-semester course of mathematics for physicists.
Course completion requirements - Czech
Last update: doc. RNDr. Mirko Rokyta, CSc. (07.05.2018)

Zkouška z předmětu je pouze ústní. Každý uchazeč si vylosuje dvě otázky ze seznamu cca 14 otázek, který bude k dispozici ke konci semestru. Otázky pokrývají přednesenou látku. Odpovědi na otázky si bude možno připravit (cca 20 minut).

Literature -
Last update: T_KMA (15.05.2008)

J. Lukeš: Zápisky z funkcionální analýzy, skriptum MFF UK, Karolinum, 1998

P. Čihák, M.Rokyta a kol.: Matematická analýza pro fyziky (V), skriptum MFF UK, Matfyzpress 2003

K. Najzar: Funkcionální analýza, skriptum MFF UK, SPN, 1981

Syllabus -
Last update: doc. RNDr. Mirko Rokyta, CSc. (07.05.2018)
1. Basic facts on operators
Banach and Hilbert spaces. Operators and functionals, linear and nonlinear. Boundedness, continuity. Operator norm. Von Neumann series.

2. An introduction to spectral analysis
Eigenvalues, spectrum, resolvent set, spectral radius.

3. Compact operators
Compact operators, spectrum.

4. Dual and adjoint operators
Duality, dual operatost, dual spaces, representation theorems. Adjoint and self-adjoint operator, Hermite operator, their spectrum. Eigenfunction bases.

5. Unbounded operators.
Unbounded operator, closed operator. Differential operators.

6. Special functions and polynomials
Bases in Hilbert space, polynomial bases. Recurrent formulas for orthogonal polynomials. Special functions: Legendre, Laguerre, Hermite polynomials, hypergeometric series.

Entry requirements - Czech
Last update: doc. RNDr. Mirko Rokyta, CSc. (07.05.2018)

Znalosti na úrovni čtyřsemestrálního kurzu z matematiky resp. matematické analýzy pro fyziky.

 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html