|
|
|
||
Calculus for the second year of Bc. study (3. semester).
Topics :
complex functions,
calculus of variation.
Laplace and Fourier transforms
Last update: Hušek Miroslav, prof. RNDr., DrSc. (30.03.2005)
|
|
||
J. Kopáček: Matematika pro fyziky IV, V S. Fučík, J. Milota: Matematická analýza II B. Novák: Funkce komplexní proměnné Last update: T_KMA (23.05.2008)
|
|
||
complex functions, holomorphic functions, Taylor polynom, elementary complex functions. Complex functions Power series and its convergence radius, derivative and ingral of power series. Holomophic functions, Cauchy-Riemann conditions, primitive functions, curve integral, Cauchy theorem,, Cauchy formula, Liouville theorem, power expansions of holomorphic functions, uniqueness theorem. Laurent series, rezidua and their application to integrals of real functions. Gamma function on complex numbers. Calculus of variations. Extremal valuesof L(y)=Integral( f(x,y(x),y'(x)) , dx) and Euler equations, isoperimetrical problems. Laplace and Forier transforms basic properties and relations, transorms of elementary functions. Inverse Laplace and Fourier transforms. Application to solution of differential equation. Last update: Hušek Miroslav, prof. RNDr., DrSc. (30.03.2005)
|